

Siemens Gamesa AEP increase Solution

August 2017

Service Product portfolio - Optimization

Brazil Windpower 2017 conference & exhibition

Reliability To keep turbines up and running

- Maintenance: Scheduled service, trouble shooting, Standard and major corrective works etc.
- CMS & RDS: 24/7 monitoring of +25.000 turbines globally and world-class Vibration Diagnostic.

Reassurance To achieve maximum benefit and surpass expectations

- Time Based to Yield Based availability to maximize the operational availability.
- Weather Cover: Gives you added protection against adverse weather.

Optimization To improve the performance /capabilities of the turbines and wind farms

• Performance upgrades to maximize the profitability of your fleet.

Knowledge To gain access to additional wind farm data and expert knowledge

- Data and control: Remote access to turbine data and operational parameters.
- Knowledge transfer: Access to maintenance documentation and +100 technical and safety trainings.

Optimization

Knowledge

Gamesa turbines OPTIMIZATION

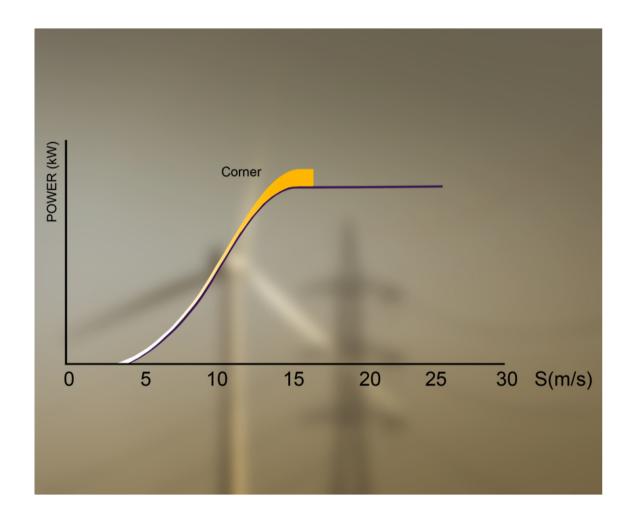
Energy Thrust is a proven Gamesa product designed to increase production of your whole fleet.

Already installed in more than 6,700 MW in 20 countries, representing 20% of the qualified Gamesa fleet, Energy thrust delivers Up to 5% in the oldest platform and up to 3% in the more recent ones.

Introduction

- Energy Thrust upgrade is designed to increase Annual Energy Production (AEP) of existing 2.0 MW wind turbines of Brazil using the newest software upgrades available to optimize operation.
- Improved **AEP** is achieved by:
 - Fine-tuning the following PLC algorithms:
 - Enhanced Corner.
 - Extra Power.
 - Safe Mode (oldest turbines)
 - Updating SCADA to:
 - Work with the new software.
 - Include PI data adjustments for measuring process.
 - Regulate active power regulation to not overproduce.
 - Enable or upgrade Service Panel to activate Energy Thrust.

Enhanced Corner - Description and benefits



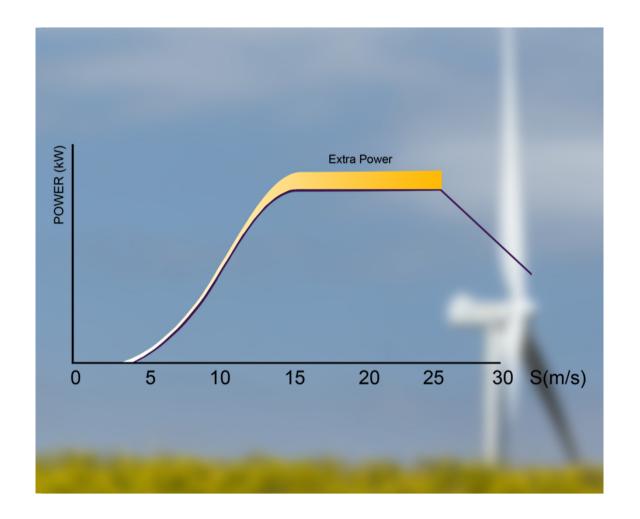
Description

 AEP increase of approximately 0-0.9% is achieved by means of increasing the nominal power in short periods of time under certain grid and environmental conditions.

Benefits

- Obtains **more power** considering site conditions (K, Vm, turbulence, shear, up-flow, temperature, etc.).
- Compensates power losses due to wind turbulence effect or grid losses due to wind turbine stoppages. Greater wind turbulence equals greater AEP increase.
- **Improves transition** between partial to nominal power range.

Extra Power - Description and benefits



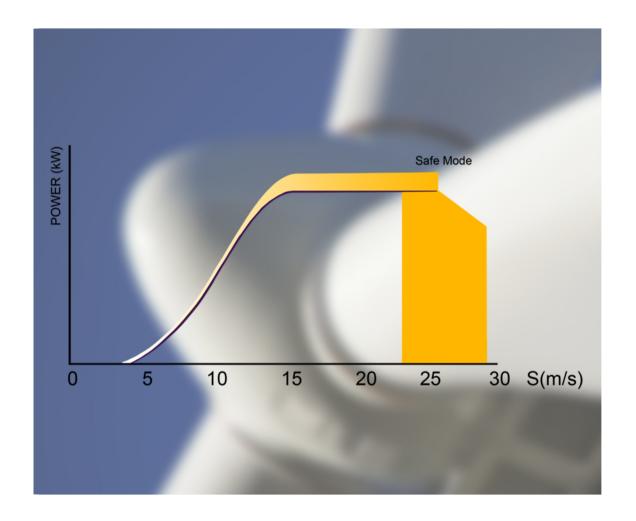
Description

 AEP increase of approximately 0.5-2.0% by increasing nominal power to 2,070kW depending on the real time parameters of the wind turbines (temperature, voltage, reactive power, nominal power, etc.).

Benefits

- Output power produced nearest to authorized power.
- Power compensation when grid losses occur or wind turbines stoppages.
- Controlled operation when extra-power is produced.

Safe Mode - Description and benefits

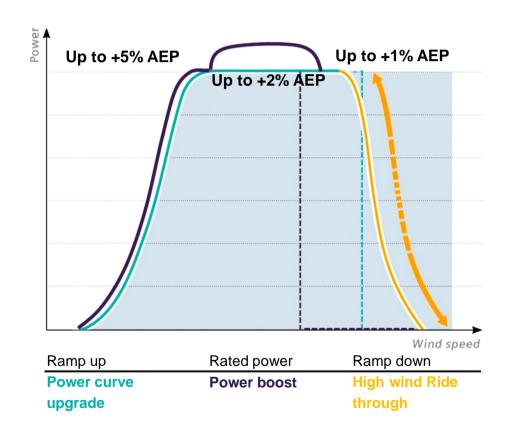


Description

 With the software upgrade, AEP increase of approximately 0.5/2.0%, by broadening the range of operation by more than 10% and raising the hysteresis cut-in limit by 3 m/s. The software takes into account all mechanical and electrical limits of turbines, adjusting the output and revolution in each moment.

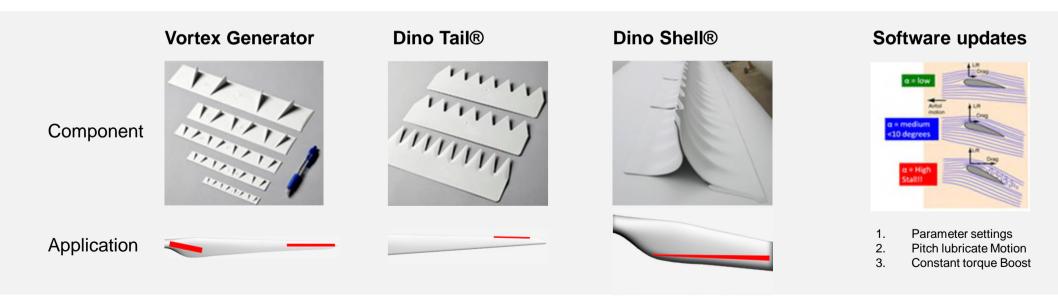
Benefits

- More output power produced as turbines will not stop due to gusts of wind over cutout limit.
- Controlled operation when extra-power is produced.


Siemens turbines OPTIMIZATION

Siemens Gamesa can also maximize AEP of the Siemens fleet combining:

- Power boost feature (Extra power for SWT-2.3-93, 101 & 108, SWT-3.6-107 & 120, SWT-3.0 DD turbines with STC-1 and DD22 turbines)
- With power curve upgrade (aerodynamic upgrades available for SWT 2.3 – 82VS, 93 & 101 and SWT 3.6 – 107 turbines)
- And high wind ride through® (Safe mode up to 39 m/s for SWT-2.3-82VS, 93, 101 & 108, SWT-3.6-107 & 120)



Power curve upgrades

- The power curve upgrade consists of 3 components and a software update.
- The upgrade allows the turbine to operate with a new power curve, generating more energy with less noise in some specific cases.
- New Siemens Blades come with the same upgrade from factory.

Components Vortex Generators

What is a Vortex generator?

- Injection molded thermoplastic components made out of a compound polymeric material (pic 1).
- Small vertical fins with heights of 4 24 mm (five sizes) that jut out of the surface of the blade.

Where is it located?

 They are mounted both inboard at the root section of the blade as well as outboard at the tip of the blade.

How does it work?

- It mixes the air very close to the blade surface with the air further away (pic 2).
- It thereby delays the airflow separating from the blade surface and thus increases lift.

Why is it of benefit?

- It reduces roughness sensitivity.
- It increases lift and thereby the energy production.

Components DinoTail®

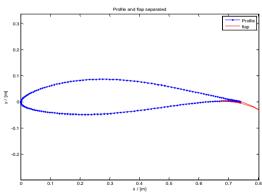
Brazil Windpower 2017 conference & exhibition

What is a DinoTail®?

- Injection molded thermoplastic components made out of a compound polymeric material (pic 1).
- Siemens patented flaps with serrated edges that are glued onto the trailing edge of blade tip.

Where is it located?

They are mounted at the tip section of the blade.


How does it work?

• It enhances the lift by extending the blade chord (pic 2).

Why is it of benefit?

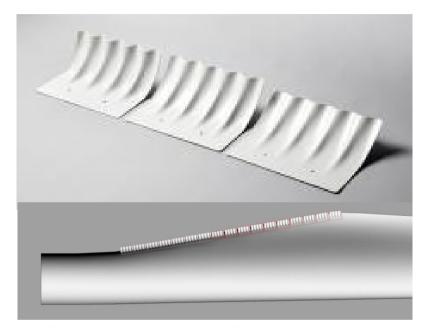
It increases lift and thereby the energy production.

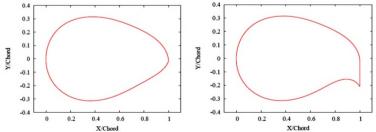
Components DinoShell®

What is a DinoShell®?

- Injection molded thermoplastic components made out of a compound polymeric material (pic 1).
- Siemens patented flaps that are glued onto the trailing edge of blade root.

Where is it located?

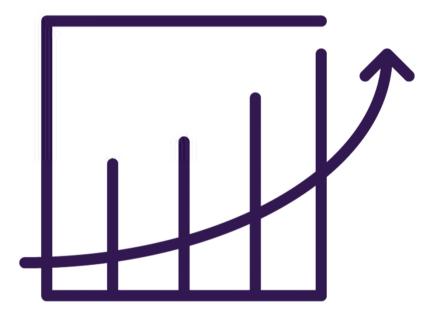

They are mounted at the root section of the blade (pic 2).


How does it work?

 It enhances blade lift. However, in contrast to other types of flaps, the DinoShell[®] does not extend beyond the original chord length (pic 3).

Why is it of benefit?

It increases lift and thereby the energy production.



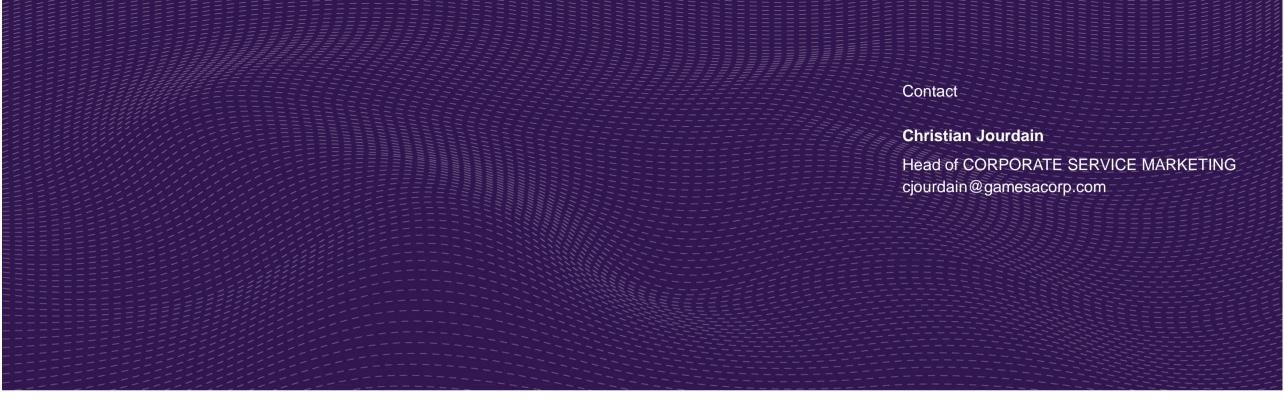
Power Curve Upgrade Track record

Multi-Technology:

- First at-site installation in 2010
- 100 + at-site installations & 2000 + factory installations
- Up to 5% AEP improvement compared to the original warranted power curve

Siemens Gamesa turbines

OPTIMIZATION



- Siemens Gamesa upgrades require blade hardware and software upgrades for wind turbine PLC and SCADA.
- All software functionalities work in unison to increase power production and AEP at not risk for the assets.
- Siemens Gamesa provides proven solutions and with a solid track record that increase AEP of both fleet.
- Siemens & Gamesa will leverage experience and combine the best of the two portfolios to maximize customers' benefits.

Dino Tail®
Dino Shell®

Wind Through

Energy Iniust

Thanks

August 2017

