

ABSOLAR - Brasil Solar Power 2018

Expansão da Energia Solar no Sistema Interligado Nacional

Francisco José Arteiro de Oliveira Diretor de Planejamento

Expansão da Oferta de Energia Elétrica

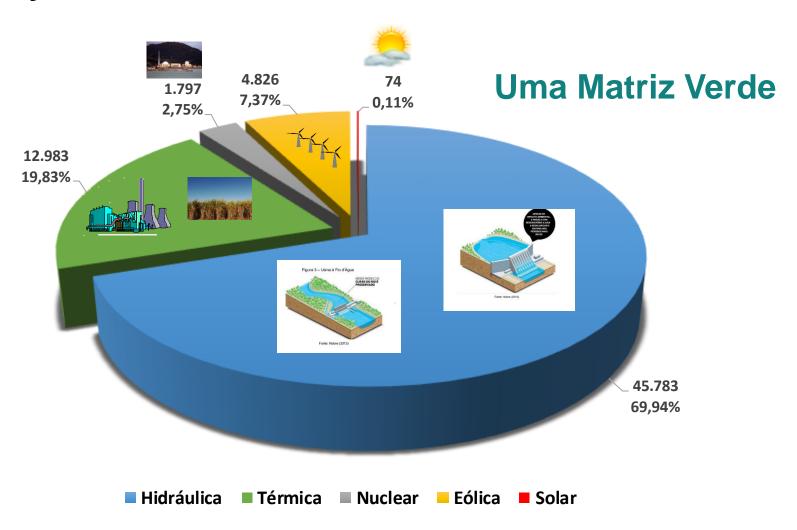
Leilões de Energia Condicionados à Capacidade de Remanescente de Escoamento de Geração

Desafios Técnicos para o Aumento da Expansão da Energia Solar Fotovoltaica no SIN

Integração de Empreendimentos de Geração Fotovoltaica ao Sistema de Transmissão

Tecnologia Solar como Fonte de Energia

Conclusões & Pontos para Discussão



Expansão da Oferta de Energia Elétrica

A MATRIZ DE ENERGIA ELÉTRICA EM 2017

Geração Verificada no SIN - MWmed

A MATRIZ DE ENERGIA ELÉTRICA DE 2017 E 2022

Geração já contratada segundo Leilões ao menor preço

Tino	2017		2022		Crescimento 2017-2022	
Tipo	MW	%	MW	%	MW	%
Hidráulica	105.406	67,8%	114.395	65,6%	8.989	8,5%
Nuclear	1.990	1,3%	1.990	1,1%	0	0,0%
Gás / GNL	12.597	8,1%	15.641	9,0%	3.044	24,2%
Carvão	3.138	2,0%	3.420	2,0%	282	9,0%
Óleo / Diesel	4.732	3,0%	5.018	2,9%	286	6,0%
Biomassa	13.623	8,8%	13.829	7,9%	206	1,5%
Outras (1)	779	0,5%	950	0,5%	171	22,0%
Eólica	12.309	7,9%	15.373	8,8%	3.064	24,9%
Solar	952	0,6%	3.638	2,1%	2.686	282,1%
Total	155.526	100,0%	174.254	100,0%	18.728	12,0%

(1) Usinas Biomassa com CVU

A EXPANSÃO DA OFERTA ENTRE 2017 E 2022

TIPO	31/12/2017		31/12/2022		CRESCIMENTO 2017-2022	
	MW	%	MW	%	MW	%
Hidráulica	105.406	67,8%	114.395	65,6%	8.989	8,5%

8.719 MW (96%) – UHEs sem Reservatório 401 MW (4%) – UHEs com Reservatório

Sem Reservatório		Com Reservatório		
UHE Belo Monte	6.722 MW	UHE Sinop	401 MW	
UHE São Manoel	700 MW			
UHE Colíder	300 MW			
PCHs	670 MW			
Outras	327 MW			

PANORAMA MUNDIAL DA ENERGIA SOLAR CAPACIDADE EM 2016

Fotovoltaica (PV): 303 GW

Residencial (Rooftop)

Comercial / Industrial

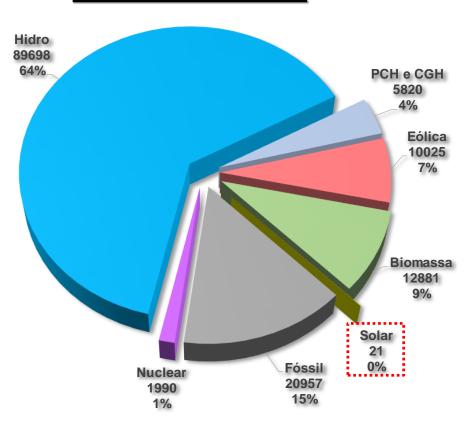
Planta / Usina

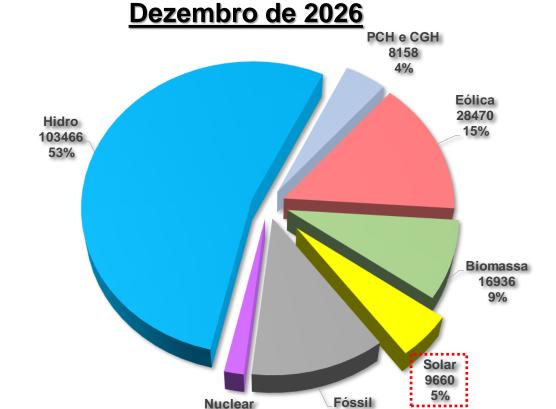
Centrais Termosolares de Concentração (CSP): 4,8 GW

Torre Central

Calhas Cilindro-Parabólicas

Receptores Fresnel

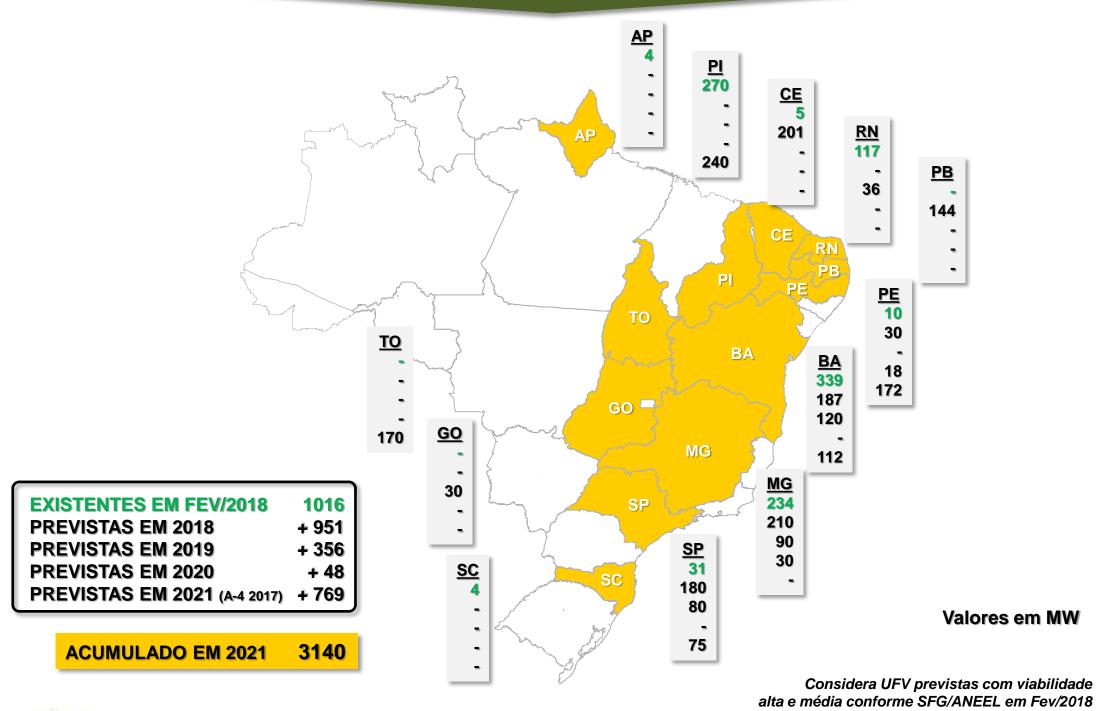

Fonte: 2017 REN21 Renewables Global Status Report (GSR)



PLANO DECENAL DE ENERGIA 2026

Evolução da Capacidade Instalada por Fonte de Geração para a Expansão de Referência

3395



23239

12%

EXPANSÃO CONTRATADA DA GERAÇÃO FOTOVOLTAICA

Desafios Técnicos para o Aumento da Expansão da Energia Solar Fotovoltaica no SIN

EXPANSÃO UFV E O DESEMPENHO DO SIN

Inércia Sistêmica

A substituição de fontes convencionais (geradores síncronos) como alternativa de expansão do parque gerador e o deslocamento das plantas termelétricas na ordem de despacho econômico, contribuem para reduzir a relação entre a inércia e capacidade instalada no sistema, potencializando dificuldades para controle da frequência durante grandes perturbações

Possíveis ações mitigadoras:

- Programação de despacho de geração em usinas convencionais maximizando o número de unidades sincronizadas (atribuição ONS/Agentes)
- Inclusão crescente de compensadores síncronos na composição das alternativas de expansão do sistema de transmissão (atribuição EPE)
- Emulação de resposta inercial das UFV, considerando o armazenamento de energia em baterias
- Redespacho da potência transmitida pelos elos CCAT para contribuir para atenuar o déficit de geração do sistema receptor durante grandes perturbações
- Mix Fotovoltaica e Termossolar

EXPANSÃO UFV E O DESEMPENHO DO SIN

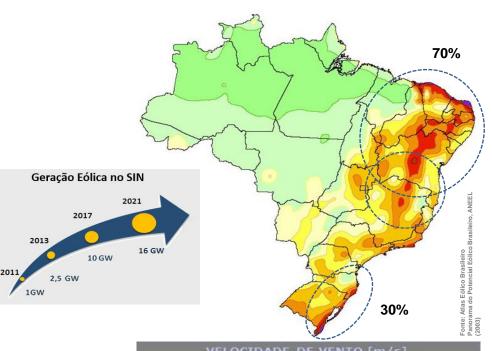
Nível de Curto-Circuito (SCR)

Os sites no Brasil onde há a incidência dos maiores índices de irradiação solar estão localizados em regiões do sistema caracterizadas redes fracas, com baixo nível de curto-circuito (SCR) e baixa inércia, muitas vezes necessitando de reforços na rede para o correto desempenho dos inversores utilizados nas usinas solares fotovoltaicas

Há especial preocupação em vista da expansão da transmissão CCAT no Brasil e da possibilidade dos baixos níveis de potência de curto-circuito na região das estações inversoras (São Paulo e Minas Gerais) resultar em interações adversas na configuração *multi infeed* como, por exemplo, falhas de comutação múltiplas e sucessivas

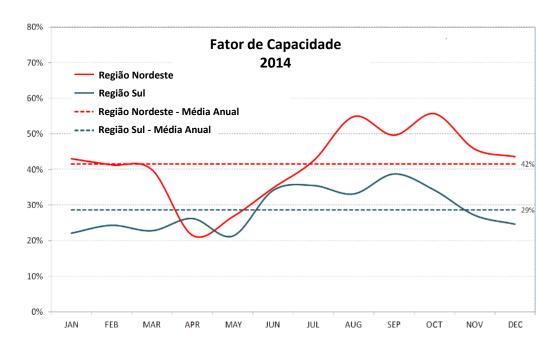
Qualidade de Energia

A presença crescente de conversores eletrônicos CC/CA tende a aumentar os níveis de poluição harmônica no SIN, demandando maior emprego de elementos para mitigação (filtros), com consequente aumento da dificuldade de controle de sobretensões em regime normal e durante contingências


EXPANSÃO UFV E O DESEMPENHO DO SIN

Aspectos Gerais

- Os inversores associados as centrais fotovoltaicas, devem ser capazes de participar do controle de tensão nessas redes fracas de forma eficiente, mesmo quando produzem pouca ou nenhuma potência ativa
- A variabilidade das fontes renováveis provoca uma maior variação dos fluxos de potência (em valores absolutos e temporal). Devido ao alto grau de expansão das fontes renováveis - sistemas de transmissão deve ser adaptada a este novo paradigma
- A rede deve estar preparada para lidar com uma quantidade maior de perda de geração, por exemplo, quando a irradiação solar em uma determinada área reduz de forma muito rápida



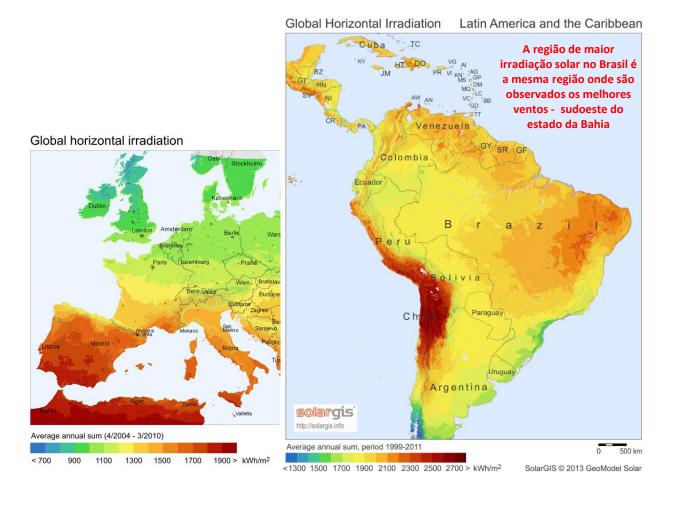
PANORAMA DA ENERGIA EÓLICA NO BRASIL

	Mata	Campo	Zona costeira	Morro	Montanha
4	> 6,0	> 7.0	> 8.0	> 9,0	> 11,0
3	4,5 - 6,0	6.0 - 7.0	6,5 - 8,0	7,5 - 9,0	8,5 - 11,0
2	3.0 - 4.5	4,5 - 6,0	5.0 - 6.5	6.0 - 7.5	7,0 - 8,5
1	< 3,0	< 4.5	< 5.0	< 6,0	< 7.0

Capacidade Instalada (Dez/2016): 9.611 MW Maior potencial nas regiões Nordeste e Sul: +6.594 MW nos próximos cinco anos

Ventos Região Nordeste

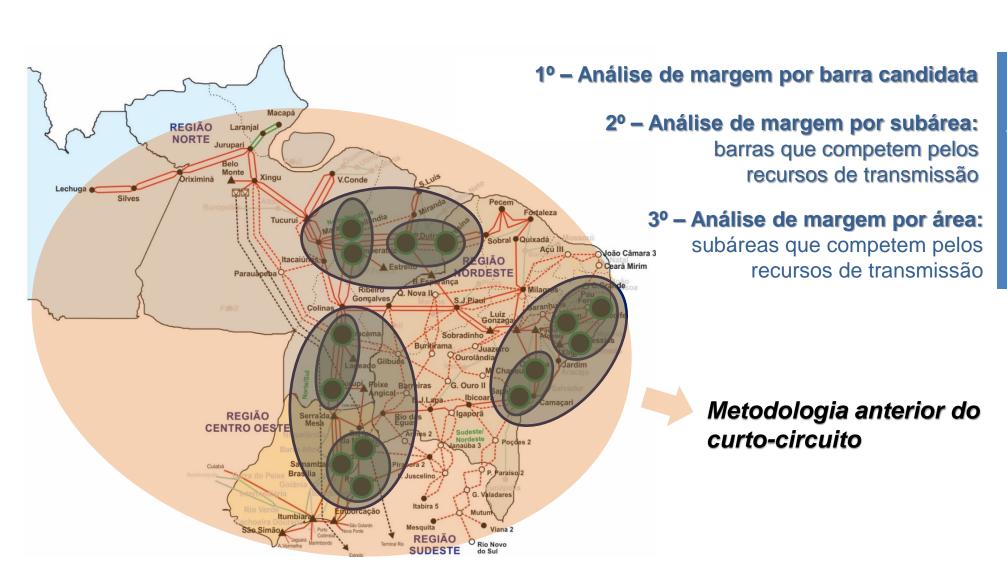
- Ventos alísios
- Direção predominante sudeste
- Constante ao longo do ano


Ventos Região Sul

- São afetados por diferentes sistemas meteorológicos
- Sofrem significativa modificação ao longo do dia

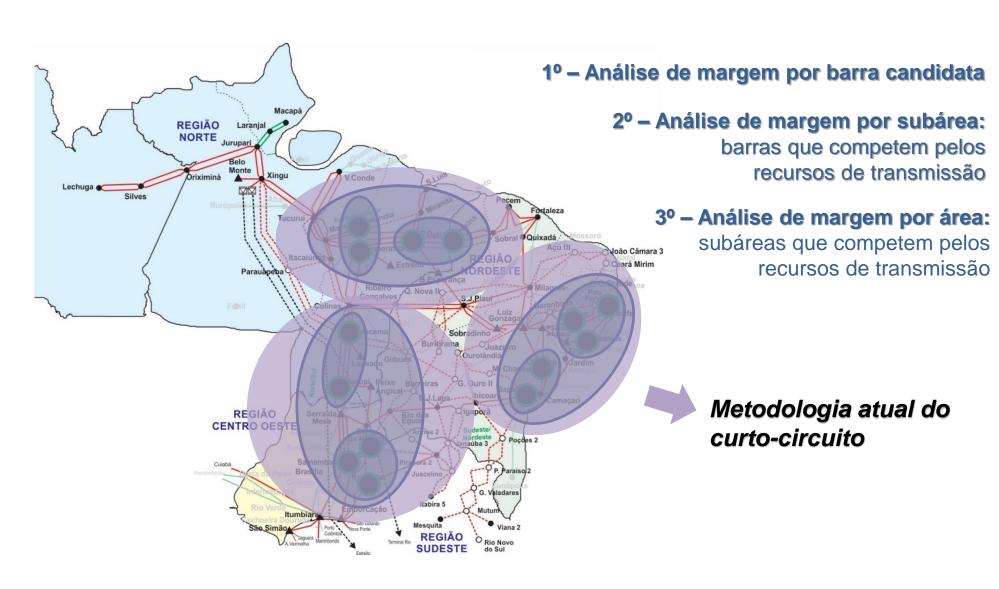
PANORAMA DA ENERGIA SOLAR NO BRASIL

Até o presente momento estão em operação 8 parques solares fotovoltaicos na rede básica, representando cerca de 1 GW de capacidade instalada



Leilões de Energia Condicionados à Capacidade Remanescente de Escoamento de Geração

LEILÃO DE ENERGIA NOVA A-4 / 2018


Aperfeiçoamento da Metodologia de Avaliação de Superação por Corrente de Curto-Circuito

LEILÃO DE ENERGIA NOVA A-4 / 2018

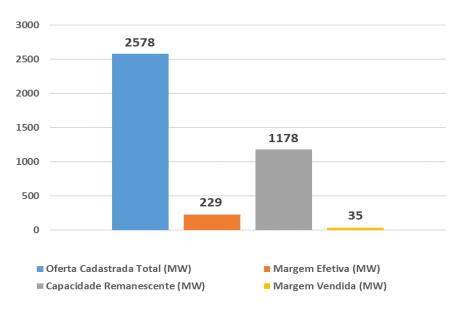
Aperfeiçoamento da Metodologia de Avaliação de Superação por Corrente de Curto-Circuito

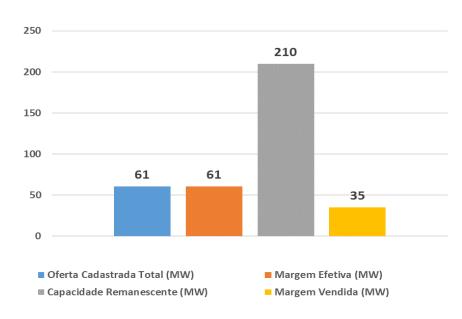
LEILÃO DE ENERGIA NOVA A-4 / 2018

Aperfeiçoamento da Metodologia de Avaliação de Superação por Corrente de Curto-Circuito

Caso Exemplo - CEARÁ

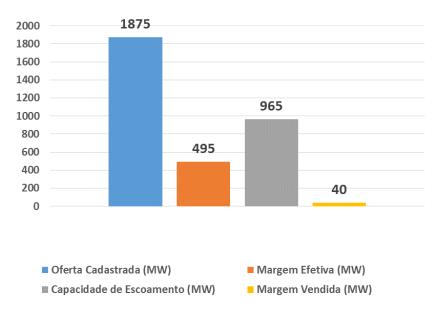
Áreas	Margem calculada com a Metodologia Antiga (até A-4/2017) (MW)	Margem calculada com a Metodologia Nova (A-4/2018) (MW)
Área A	0	695
Área B	0	600
Área C	0	600
Área D	0	340
Área E	0	1.300
Área F	0	1.300
Área G	0	1.300
TOTAL	0	6.135



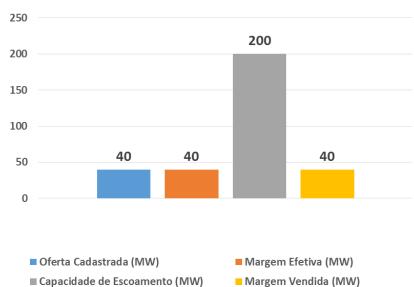

Leilão de Energia Nova A-4 / 2018

Margens vendidas – Região Sul e Mato Grosso do Sul

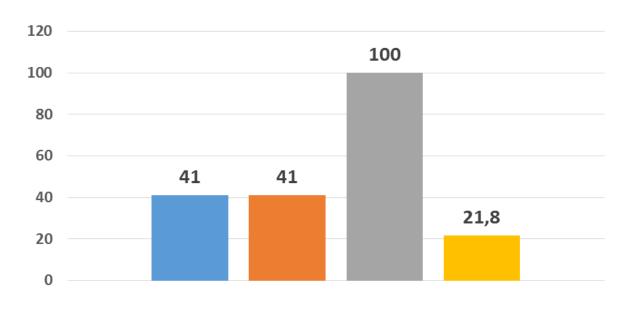
Capacidade Remanescente de Escoamento - Estado do Rio Grande do Sul



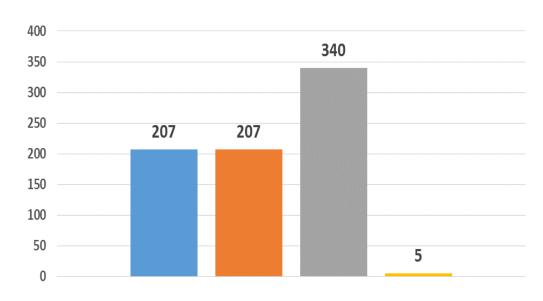
Capacidade Remanescente de Escoamento – Barramento Santa Maria 3 69 kV

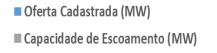


Capacidade Remanescente de Escoamento - Estado de São Paulo

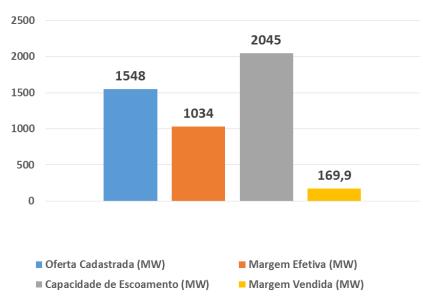

Capacidade Remanescente de Escoamento – Barramento Porto Colômbia 138 kV

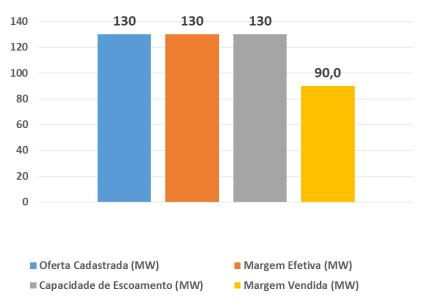
Obs: É importante destacar que como resultado do leilão A-4 de 2018 foi negociado um montante de cerca de 40 MW, localizado no estado de Minas Gerais, mas que irá impactar eletricamente o barramento de Porto Colômbia 138 kV, no estado de São Paulo.

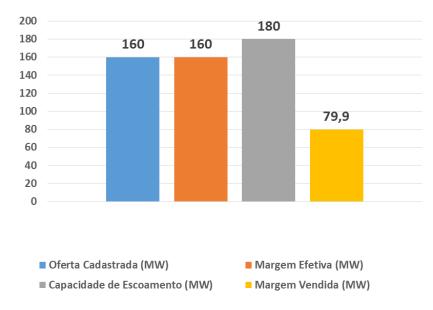

Capacidade Remanescente de Escoamento – Estado do Espírito Santo (Barramento da SE Verona-138 kV)



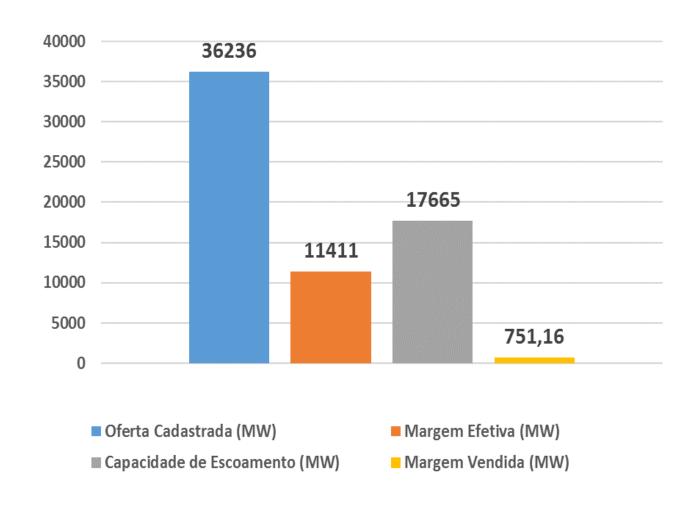
Capacidade Remanescente de Escoamento – *Estado do Mato Grosso*


Obs: Capacidade Remanescente de Escoamento – Área Rondonópolis 230/138 kV, Lucas do Rio Verde 138 kV, Jauru 138 kV, Nova Mutum 69 kV, Brasnorte 138 kV e Parecis 138 kV

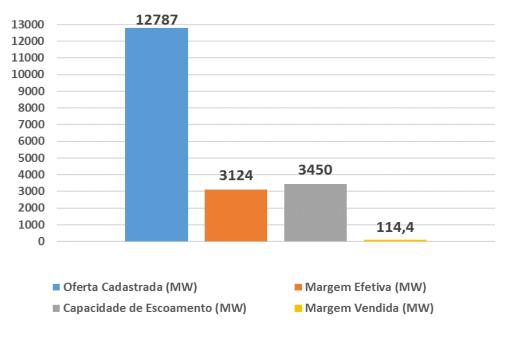

Margem Efetiva (MW)Margem Vendida (MW)

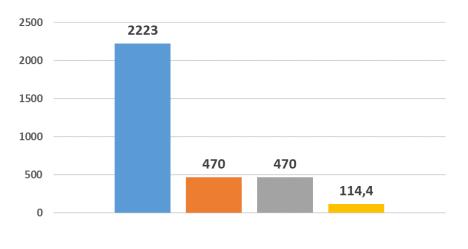

Capacidade Remanescente de Escoamento – Estado de Minas Gerais

Capacidade Remanescente de Escoamento – Barramento 138 kV Montes Claros 2



Capacidade Remanescente de Escoamento – Barramento 138 kV Janaúba

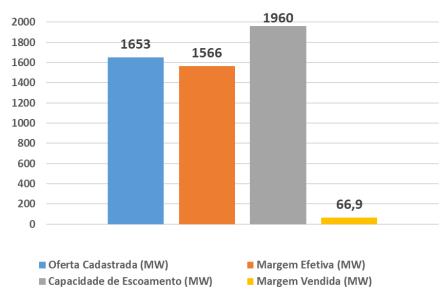


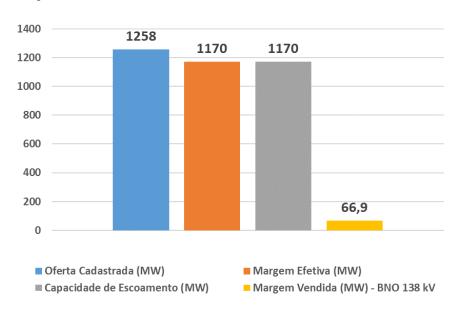

Capacidade Remanescente de Escoamento – Região Nordeste

Capacidade Remanescente de Escoamento – Estado da Bahia

■ Margem Efetiva (MW)

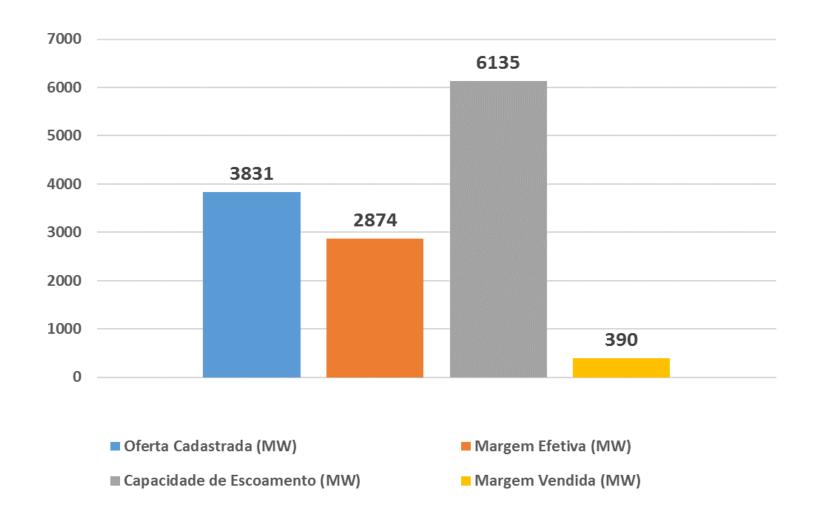
Margem Vendida (MW) - SNB 230 kV


Obs: Capacidade Remanescente de Escoamento – Subárea Juazeiro da Bahia III 230/69 kV, Juazeiro da Bahia II 230/69 kV, Sobradinho 230 kV e Senhor do Bonfim 230/138 kV


Oferta Cadastrada (MW)

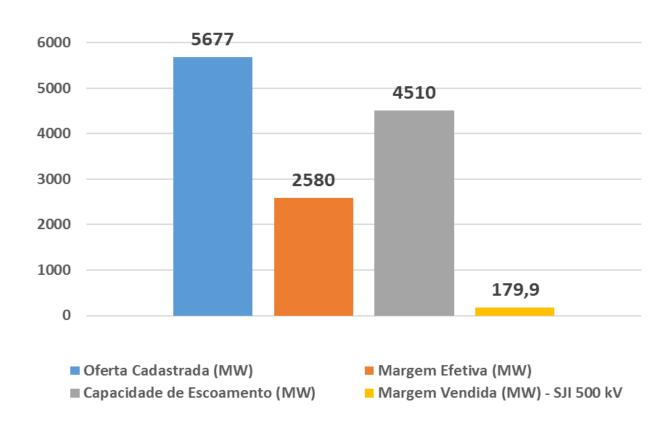
■ Capacidade de Escoamento (MW)

Capacidade Remanescente de Escoamento – Estado de Pernambuco

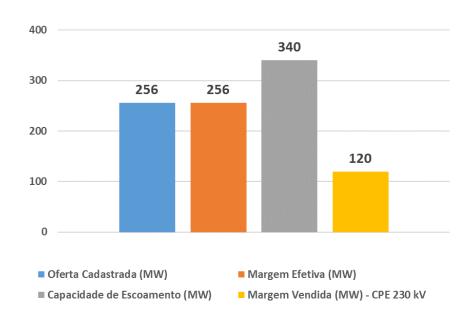


Capacidade Remanescente de Escoamento – <u>Subárea Bom Nome 230/138 kV</u>

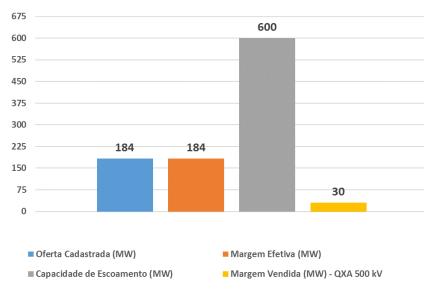
Capacidade Remanescente de Escoamento - Estado do Ceará

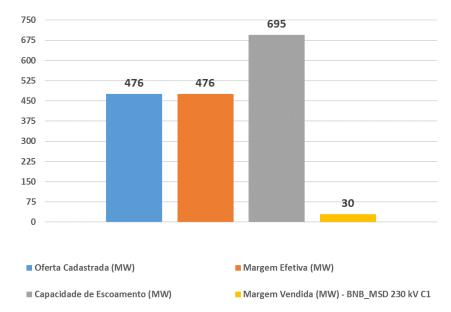


Capacidade Remanescente de Escoamento – Estado do Piauí


Capacidade Remanescente de Escoamento

Subárea Ribeiro Gonçalves 500 kV, São João do Piauí 500 kV e Gilbués II 500 kV



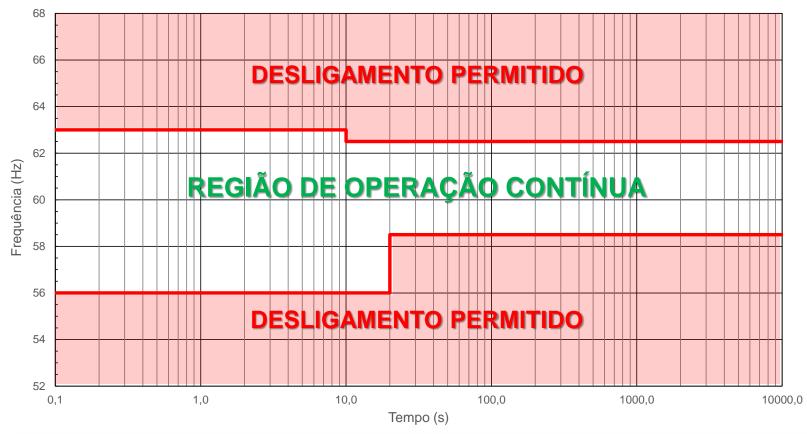

Barramento de Cauipe 230 kV


Barramento de Quixadá 500 kV

<u>Subárea Banabuiú 230 kV, Icó 230 kV e secc. da LT 230 kV Banabuiú – Mossoró II C1</u>

Seccionamento LT 500 kV Quixadá – Açu III C1

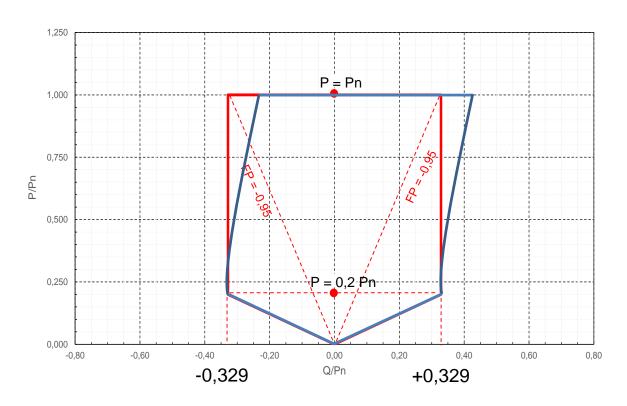
Integração de Empreendimentos de Geração Fotovoltaica ao Sistema de Transmissão


Conexão de Centrais Geradoras Fotovoltaicas ao Sistema de Transmissão*

- Operação em regime de frequência não nominal
- Controle de Potência Reativa no Ponto de Conexão
- Modos de Controle
- Operação em regime de tensão não nominal
- Atendimento do fator de potência em regime de tensão não nominal
- Participação em Sistemas Especiais de Proteção SEP
- Potência ativa de saída
- Variação de tensão em regime permanente
- Instabilidade de tensão
- Requisitos específicos para o sistema de proteção
- Requisitos de suportabilidade a subtensões e sobretensões dinâmicas
- Requisitos para injeção de corrente reativa sob defeito
- Requisitos para tomada de carga

Operação em regime de frequência não nominal

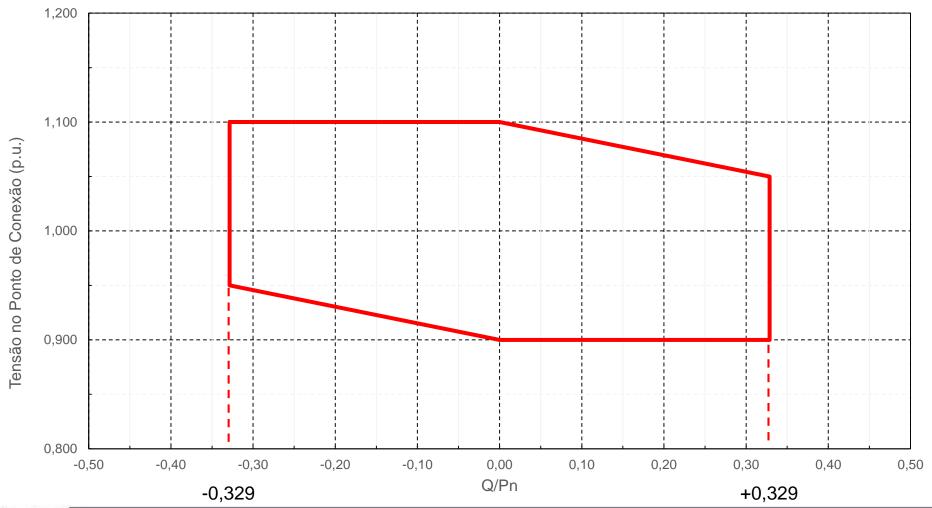
- Permitido desligamento instantâneo para operação acima de 63 Hz
- Exigida permanência mínima de 10 segundos para operação entre 62,5 Hz e 63 Hz
- Não é permitido desligamento na faixa entre 58,5 Hz e 62,5 Hz
- Exigida permanência mínima de 20 segundos para operação entre 58,5 Hz e 56 Hz
- Permitido desligamento instantâneo para operação abaixo de 56 Hz



Controle de potência reativa no ponto de conexão

No ponto de conexão das instalações de uso restrito: deve ser atendido o requisito apresentado na figura abaixo, podendo para tal ser utilizados recursos de compensação reativa (compensação shunt ou compensadores estáticos).

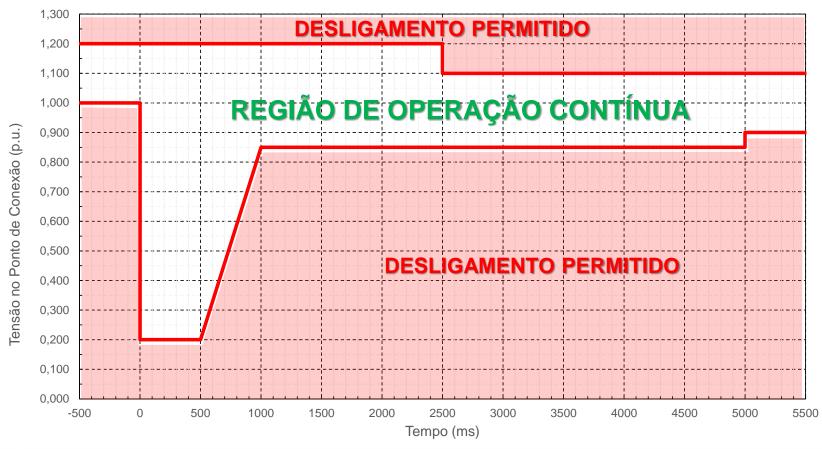
No nível do parque: todas as usinas fotovoltaicas devem ter meios de controle automático da tensão, da potência reativa ou do fator de potência. O modo de controle normal será o modo de controle de tensão no barramento coletor da central geradora fotovoltaica.



Alguns agentes já estão utilizando a tecnologia sun-free, em parte de seus conversores de forma a cumprir esse requisito, evitando com isso a necessidade de utilização de compensação shunt adicional em seus empreendimentos

Atendimento do fator de potência em regime de tensão não nominal

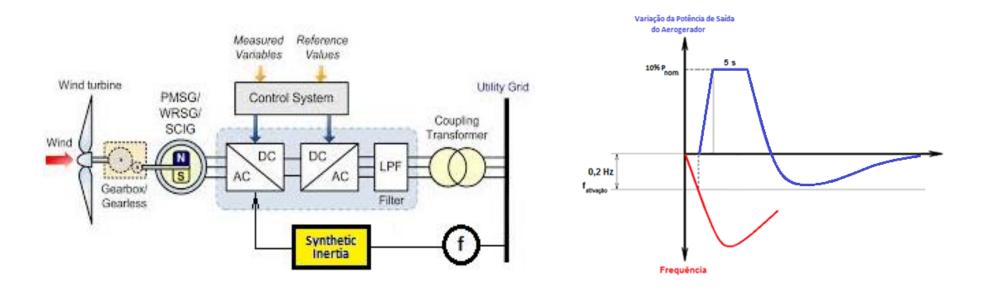
A injeção de potência reativa em regime permanente no ponto de conexão da central geradora às instalações sob responsabilidade de transmissora ou de distribuidora deve ser garantido na faixa operativa de tensões indicada na figura abaixo.



REQUISITOS TÉCNICOS MÍNIMOS

Suportabilidade a subtensões e sobretensões dinâmicas (Voltage Ride-Through)

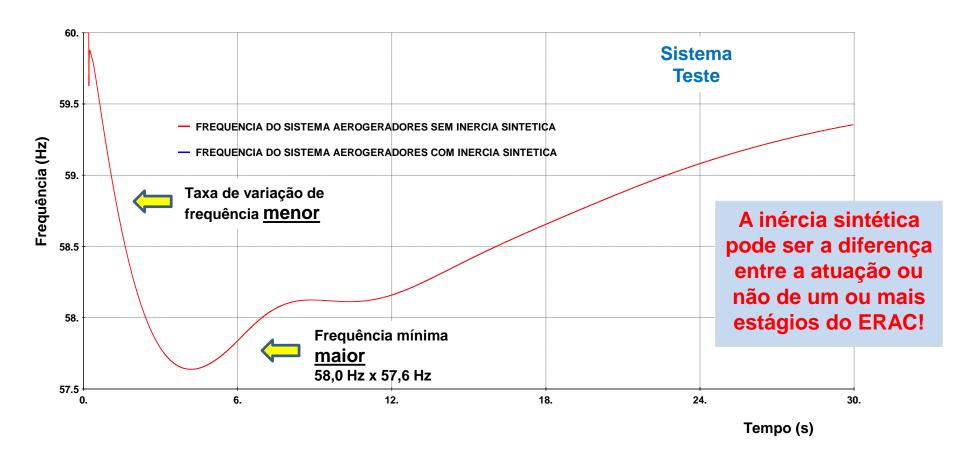
Caso haja variações temporárias de tensão em uma ou mais fases no ponto de conexão da central geradora fotovoltaica às instalações sob responsabilidade de transmissora ou de distribuidora, decorrentes de distúrbios na Rede Básica, a central geradora deve continuar operando (sem desconexão) se a tensão nos terminais dos inversores permanecer dentro da região indicada na figura abaixo. Esta característica aplica-se a qualquer tipo de distúrbio, sejam eles provocados por rejeição de carga, defeitos simétricos ou assimétricos, devendo ser atendida pela tensão da fase que sofrer maior variação.



REQUISITOS TÉCNICOS MÍNIMOS

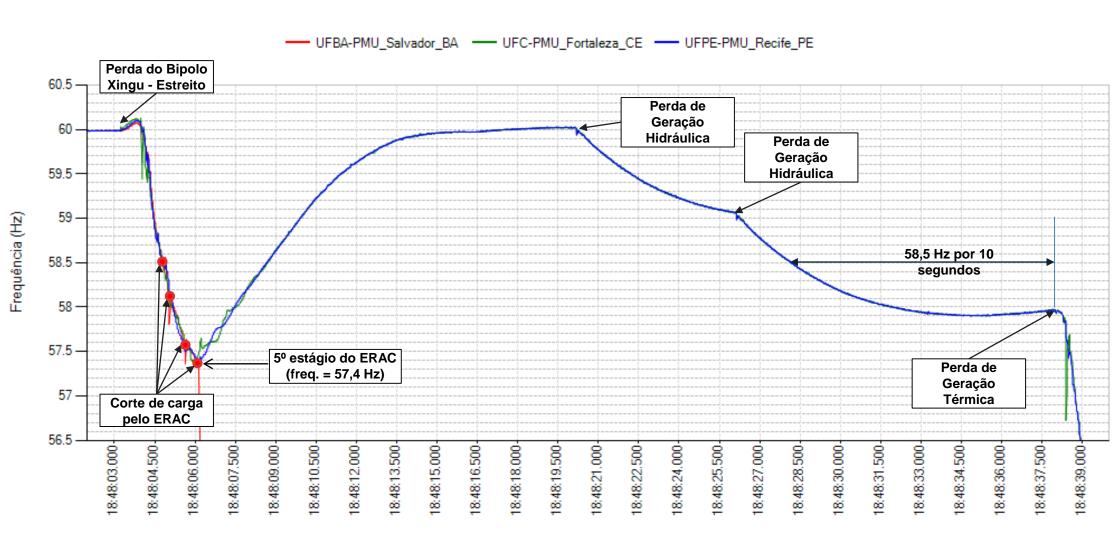
Inércia sintética (somente para centrais geradoras eólicas)

As centrais de geração eólica deverão dispor de controladores sensíveis às variações de frequência, de modo a emular a inércia (inércia sintética) através de modulação transitória da potência de saída, contribuindo com pelo menos 10% de sua potência nominal, quando em regime de subfrequência / sobrefrequência.


Esse é dos requisitos de maior importância, pois contribui para a regulação primária de frequência do SIN, sem comprometer o ponto ótimo de operação da central geradora.

REQUISITOS TÉCNICOS MÍNIMOS

Inércia sintética - Simulação Dinâmica

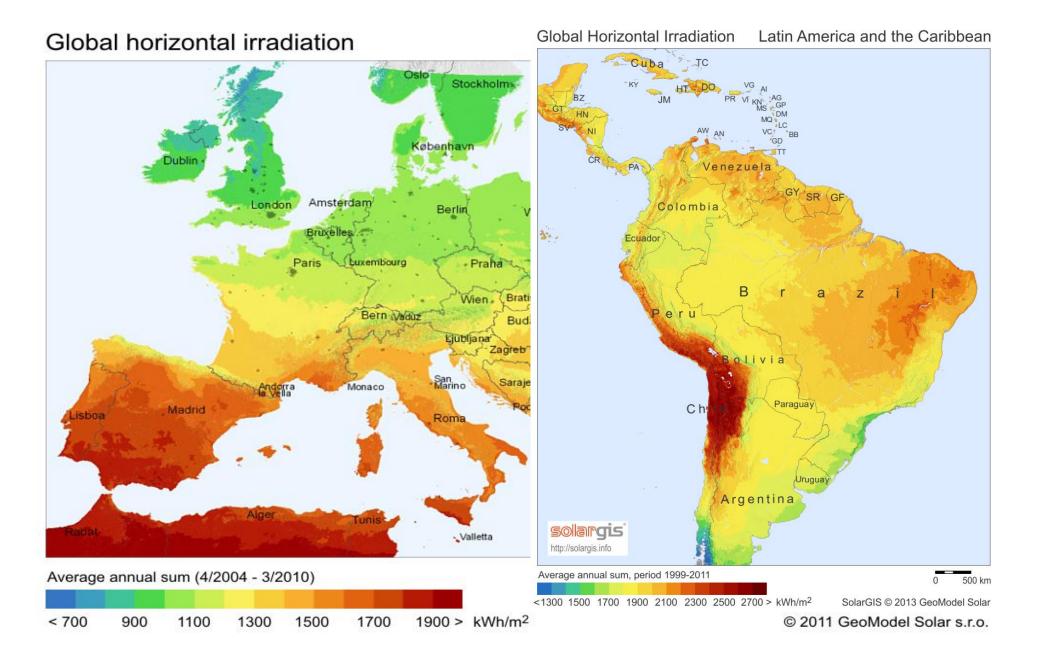

Dada a importância desse requisito, o ONS tem investigado o desempenho dinâmico de aerogeradores que possuem esse requisito em sistemas com baixa inércia. A figura abaixo mostra o resultado de uma simulação de perda de um bloco de geração, considerando os aerogeradores do sistema <u>sem</u> e <u>com</u> inércia sintética.

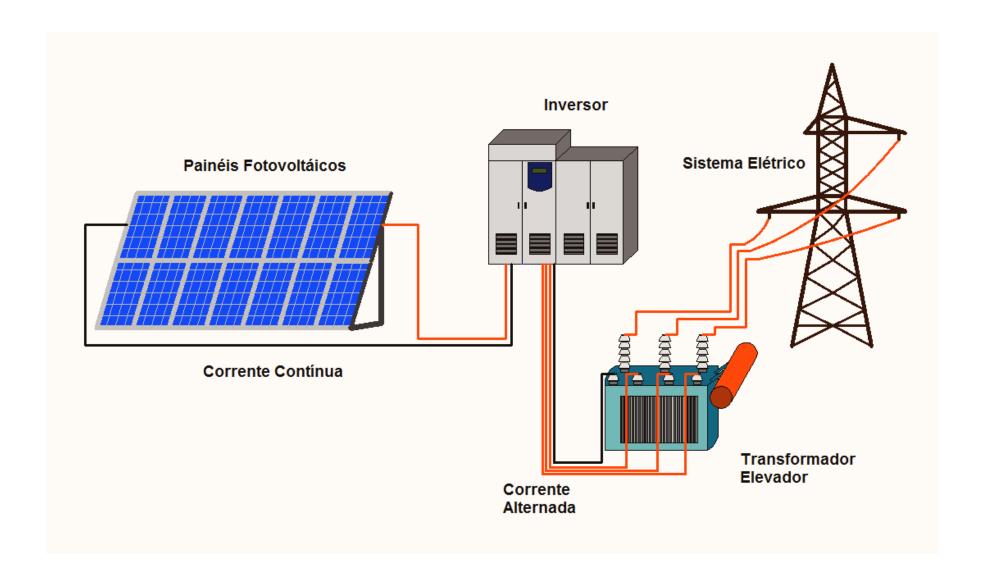
EVENTO DO DIA 21/03/2018

Comportamento da frequência do SIN - Sistema MedFasee ONS

EVENTO DO DIA 21/03/2018

Simulação do comportamento da frequência do SIN

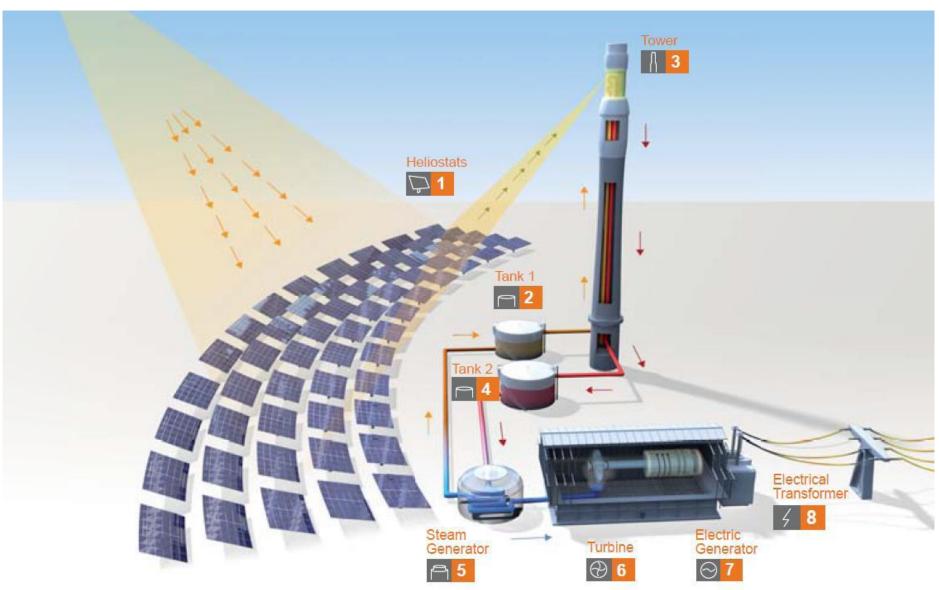



Tecnologia Solar como Fonte de Energia

ÍNDICE DE IRRADIAÇÃO SOLAR NO BRASIL

CENTRAL SOLAR FOTOVOLTAICA - DIAGRAMA

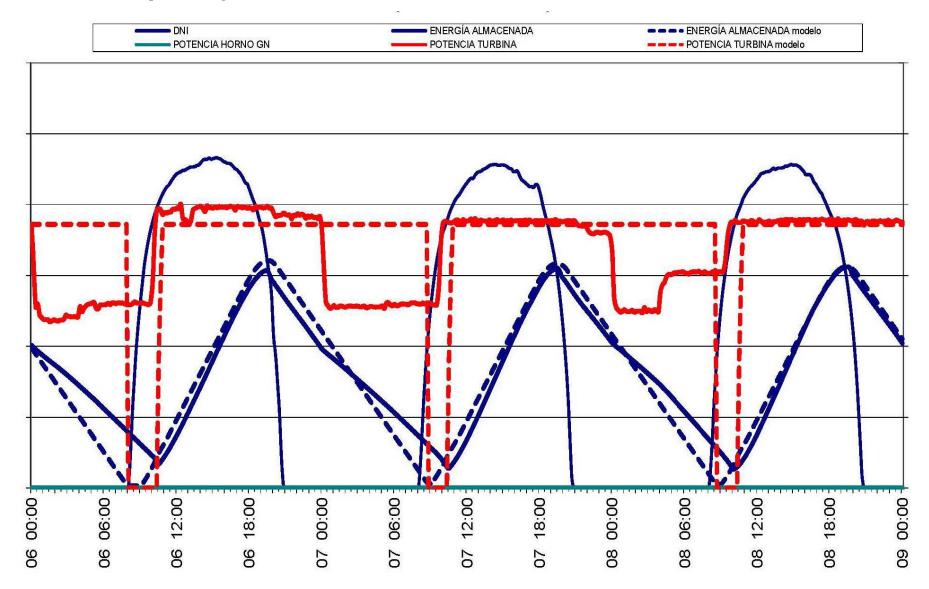
CENTRAL SOLAR FOTOVOLTAICA



Fonte: www.astroman.pl - Usina Fotovoltáica Waldpolenz Perto de Leipzig, Alemanaha (40 MW)

CENTRAL TERMOSOLAR DE TORRE CENTRAL

Torre Central + Heliostatos + Armazenamento em sais fundidos



Fonte: Torresol Energy

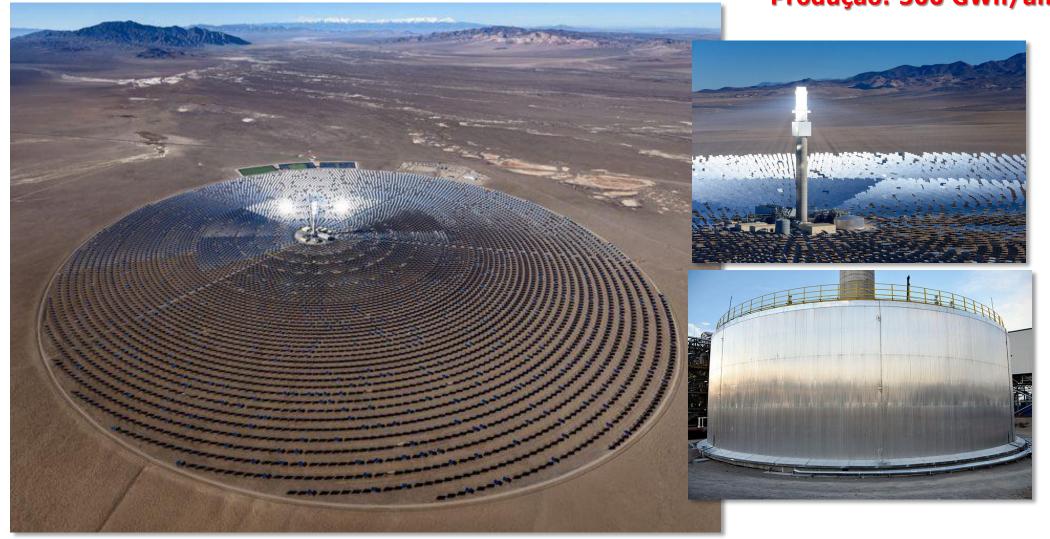
CICLO DIÁRIO DE PRODUÇÃO

Dados de produção: 06/09/2011 00:00 a 09/09/2011 00:00

CENTRAL TERMOSOLAR DE TORRE CENTRAL

GEMASOLAR - 19,9 MW - Sevilha / Espanha

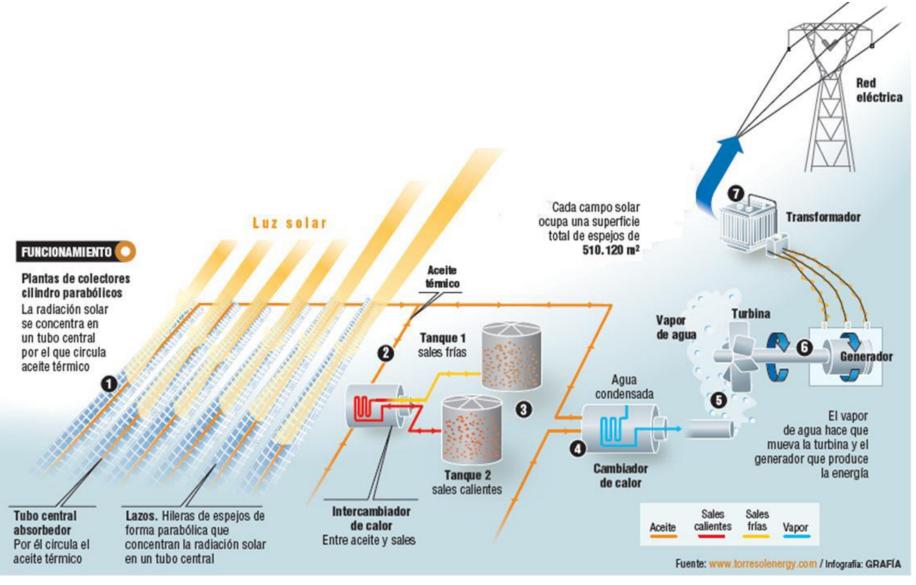
Torre Central + Heliostatos + Sais Fundidos - Armazenamento por até 15h


CENTRAL TERMOSOLAR DE TORRE CENTRAL

CRESCENT DUNES - 110 MW - Nevada / EUA

Torre Central + Heliostatos + Armazenamento por até 10h (P_{nominal})

Início de Operação: NOVEMBRO/2015


Produção: 500 GWh/ano

Fonte: Solar Reserve

CENTRAL TERMOSOLAR DE CALHAS CILINDRO-PARABÓLICAS

Fonte: Torresol Energy

CENTRAL TERMOSOLAR DE CALHAS CILINDRO-PARABÓLICAS

TORRESOL ENERGY - VALLE 1 e VALLE 2 - 50 MW - Cádiz / Espanha

Calhas Cilindro-Parabólicas + Fluido Térmico + Armazenamento por até 7,5 horas

Workshop de Energia Solar Fotovoltaica no ONS 11 de junho de 2018

Dia 11 de junho, Auditório do Rio, com videoconferência para Brasilia, Recife e Florianópolis.

Horário (Duração) Tema Conteúdo Palestrante Evolução da matriz de energia elétrica brasileira Desafios para a operação do SIN Necessidade de previsão da geração intermitente fotovoltaica Perspectivas de crescimento da geração fotovoltaica Perspectivas de crescimento da geração fotovoltaica Desafios a serem transpostos Resumo dos projetos dos leilões e contextualização no Brasil 10:00 (30min) Resumo dos projetos dos leilões e contextualização no Brasil 10:00 (15 min) DEBATE INTERVALO INTERVALO Mario Daher (ONS) Mario Daher (ONS) Rodrigo Sauaia (ABSOLAR) Rodrigo Sauaia (ABSOLAR) Rodrigo Sauaia (ABSOLAR) Frequisitos de medição para o leilão Tecnologias disponíveis DEBATE INTERVALO Mapa solar Requisitos de medição de grandezas Requisitos para ter uma boa previsão de curto prazo Monitoramento através de imagem de satélite 11:50 (40 min) Nario Daher (ONS)				N/
9:00 (30 min) Abertura Desafios para a operação do SIN Necessidade de previsão da geração intermitente fotovoltaica Perspectivas de crescimento da geração fotovoltaica Desafios a serem transpostos Resumo dos projetos dos leilões e contextualização no Brasil Desafios a serem transpostos Impacto do dimensionamento dos projetos na variabilidade na produção Requisitos de medição para o leilão Tecnologias disponíveis DEBATE INTERVALO Adardo Daher (ONS) Mario Daher (ONS) Rodrigo Sauaia (ABSOLAR) Rodrigo Sauaia (ABSOLAR) Frevisão de geração de fonte fotovoltaica – insumos e requisitos Previsão de geração de fonte fotovoltaica – insumos e requisitos Vereira de previsão de geração de fonte fotovoltaica – insumos e requisitos Nario Daher (ONS) Rodrigo Sauaia (ABSOLAR) Gustavo Ponte (EPE) INTERVALO Adapa solar Requisitos de medição de grandezas Requisitos de medição de grandezas Requisitos para ter uma boa previsão de curto prazo Monitoramento através de imagens (sky cameras) Uso de imagem de satélite		Tema	Conteúdo	Palestrante
9:30 (30 min) Setor Pesafios a serem transpostos Impacto do dimensionamento dos projetos dos leilões e contextualização no Brasil 10:00 (15 min) Previsão de geração de fonte fotovoltaica – insumos e requisitos 11:00 (50 min) Setor Pesafios a serem transpostos Impacto do dimensionamento dos projetos na variabilidade na produção Requisitos de medição para o leilão Tecnologias disponíveis DEBATE INTERVALO Amapa solar Requisitos de medição de grandezas Requisitos de medição de grandezas Requisitos para ter uma boa previsão de curto prazo Monitoramento através de imagens (sky cameras) Uso de imagem de satélite	9:00 (30 min)	Abertura	elétrica brasileira Desafios para a operação do SIN Necessidade de previsão da	
10:00 (30min) Resumo dos projetos dos projetos na variabilidade na produção Requisitos de medição para o leilão Requisitos de medição para o leilão Tecnologias disponíveis DEBATE INTERVALO Previsão de geração de fonte fotovoltaica – insumos e requisitos INTERVALO Requisitos de medição de grandezas Requisitos para ter uma boa previsão de curto prazo Monitoramento através de imagens (sky cameras) Uso de imagem de satélite Uso de imagem de satélite	9:30 (30 min)	Setor	geração fotovoltaica	
10:15 (15 min) Previsão de geração de fonte fotovoltaica – insumos e requisitos Previsão de geração de fonte fotovoltaica – insumos e requisitos INTERVALO * Mapa solar * Requisitos de medição de grandezas * Requisitos para ter uma boa previsão de curto prazo * Monitoramento através de imagens (sky cameras) * Uso de imagem de satélite	10:00 (30min)	projetos dos leilões e contextualização	dos projetos na variabilidade na produção • Requisitos de medição para o leilão	Cuciaro i cino
Previsão de geração de fonte fotovoltaica – insumos e requisitos er requisitos en requisitos de medição de grandezas en requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos en re	10:00 (15 min)		DEBATE	
Previsão de geração de fonte fotovoltaica – insumos e requisitos en requisitos de medição de grandezas en Requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos en requisitos en requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos de medição de grandezas en requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos de medição de grandezas en requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos de medição de grandezas en requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos en requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos en requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos en requisitos en requisitos para ter uma boa previsão de curto prazo (INPE) en requisitos en	10:15 (15 min)		INTERVALO	
	11:00 (50 min)	geração de fonte fotovoltaica – insumos e	Requisitos de medição de grandezas Requisitos para ter uma boa previsão de curto prazo Monitoramento através de imagens (sky cameras)	
11.30 (40 IIIII) DEBATE	11:50 (40 min)		DEBATE	

Horário (Duração)	Tema	Conteúdo	Palestrante
12:30 (1h30 min)	ALMOÇO		
14:00 (50 min)	Previsão de geração de fonte fotovoltaica – monitoramento	 Aplicações de previsões meteorológicas numéricas Algoritmos para previsão de geração de energia Requisitos para ter uma boa previsão de curto prazo Monitoramento através de imagens (sky cameras) Uso de imagem de satélite 	Sylvio Mantelli (INPE/UFSC)
14:50 (40 min)	DEBATE		
15:30 (30 min)	INTERVALO		
16:00 (50 min)	Previsão de geração de fonte fotovoltaica – experiência internacional	 Aplicações de previsões meteorológicas numéricas Algoritmos para previsão de geração de energia Requisitos para ter uma boa previsão de curto prazo Monitoramento através de imagens Tecnologias disponíveis e tendências para o futuro 	Carlos Coimbra (UCSD) por videoconferência
16:50 (40 min)	DEBATE		
17:30	ENCERRAMENTO		

Conclusões

CONCLUSÕES

- Um planejamento criterioso da expansão da rede elétrica deve ser feito de forma a permitir a conexão segura de parques eólicos e usinas fotovoltaicas em áreas do sistema com baixo nível de curto-circuito e inércia.
 O equipamento mais apropriado para melhorar o desempenho dinâmico de um sistema com estas características é o compensador síncrono.
- Os Procedimentos de Rede, bem como os requisitos técnicos para os próximos leilões, devem refletir, e ter em conta, a melhoria do desempenho que pode ser obtido para a rede elétrica através do uso das novas tecnologias disponíveis nos inversores de última geração.
- Uma revisão detalhada dos Procedimentos de Rede foi feita pelo Operador Nacional do Sistema Elétrico - ONS, para incluir os novos requisitos técnicos que as novas tecnologias de geração eólica e solar fotovoltaica dispõem.

CONCLUSÕES

- A tecnologia solar fotovoltaica apresenta como grande desvantagem se comparada a tecnologia CSP a necessidade de inversores para a conexão da central geradora à rede. Além do custo elevado, esses inversores necessitam de requisitos específicos do sistema para seu correto funcionamento.
- A tecnologia CSP apresenta como grande vantagem se comparada a tecnologia fotovoltaica a possibilidade da conexão com a rede elétrica ser feita através de um gerador síncrono, agregando dessa forma potência de curto-circuito e inércia à rede.
- Outra vantagem da tecnologia CSP é sua menor intermitência, uma vez que parte do calor gerado pode ser armazenado através de tanques de sais fundidos e/ou fluído térmico, propiciando uma operação mais estável da planta mesmo em períodos sem sol.
- O armazenamento térmico também possibilita o planejamento do período de produção da planta, além de contribuir para o aumento na vida útil dos turbogeradores, devido a menores variações nos ciclos térmicos dos mesmos.
- A tecnologia CSP não apresenta problemas de sobreaquecimento dos cristais presente nos painéis fotovoltaicos, sobretudo em regiões de clima tropical, que provoca decréscimo na energia gerada quase sempre durante o período diário de maior radiação solar.

CONCLUSÕES

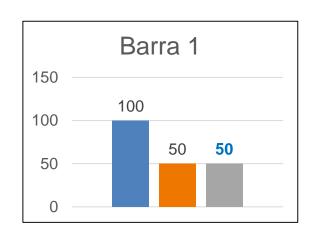
- Possibilidade de integração de usinas CSP e usinas térmicas de ciclocombinado como uma usina híbrida (ISCC, Integrated Solar Combined Cycle).
 No Brasil temos também a possibilidade de montar uma usina híbrida termosolar x bagaço de cana-de-açúcar, por exemplo.
- A tecnologia CSP tem como principal desvantagem um elevado custo de instalação e a tecnologias não totalmente desenvolvidas.

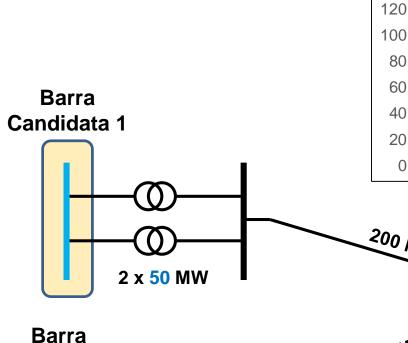
Pontos para Discussão

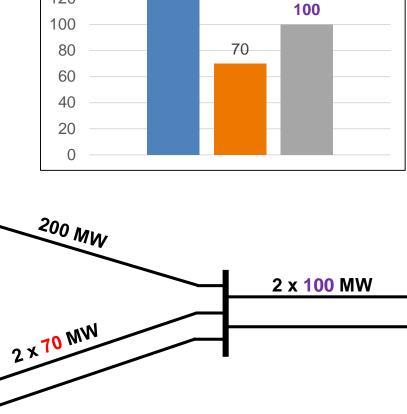
PONTOS PARA DISCUSSÃO

- Em vista da perspectiva de expansão da fonte solar fotovoltaica no Brasil e da preocupação com as exigências adicionais de flexibilidade do parque gerador convencional, incluindo o controle da frequência durante perturbações, torna-se de especial interesse facultar a essa fonte recursos para armazenamento de energia. A Associação entende que o nível de maturidade tecnológica e os custos de implantação e manutenção já asseguram condições de competitividade a novos empreendimentos fotovoltaicos com baterias no Brasil?
- Embora tenham pequena participação (< 2%) no mercado mundial, as Centrais Solares de Aquecimento, ou Termossolares, possuem características alinhadas com as necessidades do sistema elétrico, sobretudo se incluírem recursos para armazenamento de calor, ou *Thermal Energy Storage* - TES, proporcionando extensão do ciclo diário de produção e atenuação das flutuações da injeção de potência.

A Associação dispõe de estudos no sentido de indicar a viabilidade da participação de empreendimentos desse tipo nos leilões de energia no Brasil? Incluindo a possibilidade de implantação de uma usina híbrida termosolar e bagaço de cana, por exemplo?

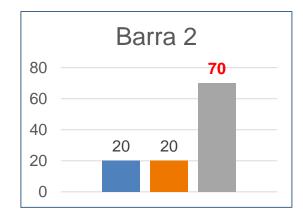


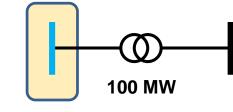


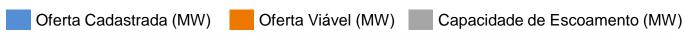


APOIO

EXEMPLO NUMÉRICO PARA DOIS PONTOS CADASTRADOS






Subárea Barra 1 + Barra 2

120

Candidata 2

140

