

Solar energy assessment and forecast

Brasil Solar Power 12/06/2018

Enio Bueno Pereira enio.pereira@inpe.br

Ministério da
Ciência, Tecnologia
e Inovação

Outline

Background on solar energy assessment

•Overview on solar irradiation forecast methods

Evaluation of methods and conclusions

Background on solar energy assessment

Solar variability

Solar energy assessment

- Dispersed source (low energy density)
- Variable energy (depends on weather and climate)
- Barrier for penetration of solar technology
- > Investments in this technology require secure information on:
 - The solar source;
 - Variability and trends;
 - •complementarity hydro-wind-biomass, etc.

Energy meteorology

LABREN - Laboratory for Modelling and Studies of Renewable Energy Resources

http://labren.ccst.inpe.br

The multidisciplinary laboratory LABREN-CCST-INPE, carries out research and teaching activities in energy meteorology and in the climate system influence on energy resources making use of satellite data, computational modelling and observational data.

Research Topics:

- •Assessment of solar and wind energy resources
- •Short and medium-term forecast of solar and wind generation
- •Energy and global climatic changes
- •Site-specific measurements, characterization and modelling of solar and wind resources

Solar resource assessment (three main principles)

Solar energy potential

terrain, environment, latitude...

Data uncertainty

type of radiometer, operation & maintenance, model characteristic

Solar variability

meteorology, climate

Solar energy potential

Solar energy potential

- > Site-specific solar assessment
- Model development
- Feasibility of projects
- Due- diligence
- Ground measurements
- Public solarimetric stations and/or networks
- Site-specific from projects proprietary data

Satellite model VS Ground measurements

Benchmark for Brasil-SR satellite model

Região	r	Viés (Wh/m²)	Viés (%)	REQM (Wh/m²)	REQM (%)	Irradiação Global Horizontal Média Observada (Wh/m²)
Norte	0,81	30	0,6%	467	9,7%	4825
Nordeste	0,87	12	0,2%	456	8,3%	5483
Centro-Oeste	0,86	23	0,5%	421	8,3%	5082
Sudeste	0,91	4	0,1%	416	8,4%	4951
Sul	0,98	-4	-0,1%	395	8,9%	4444
Médio	0,89	12	0,2%	421	8,2%	5153

New Brazilian Atlas of Solar Energy - 2007

An INPE accomplishment in association with several national universities

- 17 years of satellite data
- Spectral radiation transfer model
- Validation by using more than 500 ground sites
- National coverage

Download pdf and shape format data at: http://labren.ccst.inpe.br/atlas 2017.html

Data uncertainty

Database Uncertainties Ground data quality control

	Relevance				
Category	Very high	High	Medium		
O & M					
Quality control					
Metadata					
Choice of sensors					
Installation methods					
Location					
Frequency					
Time range					
Calibration					
Data acquisition					
Availability					

Source: Report DKTI-CSP, PN 2011.9781.3-001

Solar variability

Solar variability

short term fluctuations clearness index K₊

- Solar resource varies from site to site
- Correlation between each pair of radiometers varies with integration time

Source Perez et al., personal comunication

Solar variability

long term fluctuations

- Measurements for long-term solar resource characterizations require years to complete, which is an unacceptable timeline for the rapidly emerging needs of solar energy applications.
- It takes many years to stabilize the solar irradiance for a given site
- This is an indication of the need to compare site-specific short term solar data with long term solar information form some other available regional source of information

Source Gueymard and Wilkox, 2009

Overview on solar irradiation forecast methods

Grid integration of PV Power: marketing

- by Transmission System Operators (ONS, ANEEL)
 - Regional forecast
- direct marketing (solar plants)
 - Local forecast
- Forecast horizons

Solar forecasting horizons

Solar forecasting methodology

The best method depends on the forecast horizon

- Persistence from local ground measurements
- Cloud Motion from Sky Imagers CM-1 prediction with high spatial and tempor resolution forecastings of ramp effects 30 minutes)
- Cloud Motion from Satellites CM-Sat satellite radiative transfer models (Ex: BRASIL-SR) providing regional forecas horizons from 30 minutes to 6 hours
- Numerical Weather Prediction NWP
 Atmospheric models provides forecast vast regions on the horizon from 12h to They need adjustments through machi learning techniques (eg. neural networ)

Ground data - Persistence method Nowcast (minutes)

persistence:

$$P_{pers} = \left\{ \frac{P_{meas}(t - \Delta t)}{P_{clear}(t - \Delta t)} \right\} \times P_{clear}(t)$$

constant ratio of measured PV power P_{meas} to clear sky PV power P_{clear}

Post processing by statistical or machine learning methods

Cloud Motion from Sky Imagers - CM-SI

Sky cameras: nowcasting

Time horizon: 0 - 3h.

Comparison between predicted and measured 5-minute radiation in Taiwan
(FU and CHENG, 2013)

Cloud Motion from Satellites - CM-Sat

Raio da Terra = 6370 km

Satélite Geoestacionário Órbita – cerca de 36000 km acima da superfície Ângulo de visada da ordem de 17,5°

Satélite órbital Órbita – cerca de 800 km acima da superfície Ângulo de visada da ordem de 110°

Cloud Motion from Satellites - CM-Sat

Short-term forecasting scheme (up to 6 hours in advance) using statistical methods on GOES satellite images.

Results LABREN: Cloud detection methods (Ceff) by satellites and cameras

Useful for CM-SI and CM-Sat

Resultados recentes: Energy for Sustainable Development 43 (2018) 15–22

Contents lists available at ScienceDirect

Energy for Sustainable Development

Comparison of methodologies for cloud cover estimation in Brazil - A case study

Eduardo Weide Luiz a,*, Fernando Ramos Martins b, Rodrigo Santos Costa a, Enio Bueno Pereira a

Sky cameras X Satellite images

Satellite images calibrated with ground truth from sky cameras

LABREN Results: Ramp frequency mapping Ramp variability Score (VS)

Solar Energy 167 (2018) 210-219

Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

Analysis of intra-day solar irradiance variability in different Brazilian climate zones

Eduardo Weide Luiz^{a,*}, Fernando Ramos Martins^b, André Rodrigues Gonçalves^a, Enio Bueno Pereira^a

LABREN Results: Numerical forecast Adjusted by Artificial Neural Networks (ANN)

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks

Francisco J.L. Lima ^{a, *}, Fernando R. Martins ^b, Enio B. Pereira ^a, Elke Lorenz ^c, Detley Heinemann ^b

LABREN Results: Numerical forecast Adjusted by Artificial Neural Networks (ANN)

- ✓ Meteorological model output (WRF) fine-tuning using artificial neural network (ANN)
- ✓ ANN training performed with irradiance or local production data
- ✓ Predictions employ different methodologies for different time scales

Differences from the adjusted regional forecast

Evaluation of methods and conclusions

RMSE in dependence of forecast horizon

Persistence

$$P_{pers} = \left\{ \frac{P_{meas}(t - \Delta t)}{P_{clear}(t - \Delta t)} \right\} \times P_{clear}(t)$$

- CMV forecasts better than NWP based forecast up to 3 hours ahead
- Persistence better than CMV forecasts up to 10 minutes ahead

Combine Persistence + Satellite + Numerical model

Reported methodologies

RMSE in dependence of forecast horizon

combination of forecast models with linear regression:

$$P_{combi} = a_{NWP}P_{NWP} + a_{CMV}P_{CMV} + a_{persist}P_{persist} + a_0$$

coefficients \mathbf{a}_{NWP} , \mathbf{a}_{CMV} , $\mathbf{a}_{persist}$, \mathbf{a}_{0} are fitted to measured data in dependence of:

- · forecast horizon
- hour of the day

RMSE in dependence of forecast horizon

combination of forecast models with linear regression:

$$P_{combi} = a_{NWP}P_{NWP} + a_{CMV}P_{CMV} + a_{persist}P_{persist} + a_0$$

coefficients ${\it a}_{\it NWP}, {\it a}_{\it CMV}, {\it a}_{\it persist}, {\it a}_{\it 0}$ are fitted to measured data in dependence of:

- forecast horizon
- hour of the day

LABREN Proposed forecasts

