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Background	on	solar	energy	assessment	
	

Solar	variability	



	
Solar	energy	assessment	

 
Ø   Dispersed source (low energy density) 

Ø   Variable energy (depends on weather and climate) 

Ø   Barrier for penetration of solar technology 

Ø   Investments in this technology require secure information on: 
• The solar source; 
• Variability and trends; 
• complementarity hydro-wind-biomass, etc.	



Energy	meteorology	



LABREN	-	Laboratory	for	Modelling		and		Studies	of	
Renewable	Energy	Resources	

h7p://labren.ccst.inpe.br	

Research	Topics:	
• Assessment		of		solar	and	wind	energy		resources	

• Short	and	medium-term	forecast	of	solar	and	wind	genera>on	

• Energy	and	global	clima>c	changes	

• Site-specific	measurements,	characteriza>on	and	modelling	of	solar	and	
wind	resources	

The multidisciplinary laboratory LABREN-CCST-INPE, carries out 
research and teaching activities in energy meteorology and in the 
climate system influence on energy resources making use of 
satellite data, computational modelling and observational data. 



Solar	resource	assessment	(three	main	principles)	

Solar energy potential 
terrain, environment, latitude…  

Data uncertainty 
type of radiometer, operation & maintenance, model 

characteristic 

Solar variability 
meteorology, climate 
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This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 

Figure 7-4. Example sky imager-based 5-minute-ahead irradiance forecasts. Location: Universtity 
of California at San Diego, November 14, 2012. Image from University of California at San Diego 

Center for Energy Research 

7.2.2 Satellite-Based Forecasts 
Forecasts of several hours ahead require observations of cloud fields in large areas. For example, 
assuming a maximum cloud velocity of 160 km/h, a region of approximately 2,000 km by 2,000 
km has to be covered to track arriving clouds 6 hours ahead. Satellite data with their broad 
coverage (see Section 4.4) are an appropriate source for these horizons. 

Cloud and irradiance information from satellite images can be derived by a variety of methods, 
as presented in Chapter 4. In principle, all of them can be applied to satellite-based irradiance 
forecasting with cloud motion vectors. There are also many approaches to derive atmospheric 
cloud motion vectors, which are commonly used in operational weather forecasting to describe 
wind fields at upper levels in the atmosphere. 

Satellite-based nowcasting schemes have been developed in recent years based on cloud motion 
vectors or sectoral cloud tracking (Hammer et al. 2003, Schroedter-Homscheidt et al. 2011). The 
satellite-based forecasting scheme from the University of Oldenburg in Germany (Lorenz, 
Heinemann, and Hammer 2004, Kühnert, Lorenz, and Heinemann 2013), described exemplarily 
here, uses images of the geostationary MSG satellites (See Chapter 4). The semiempirical 
HELIOSAT method (Hammer et al. 2003; see Chapter 4) is applied to obtain information about 
clouds and irradiance. A characteristic feature of the method is the dimensionless cloud index, 
which gives information about the cloud transmissivity. 



Solar	energy	poten<al	



Solar	energy	poten?al	
	Ø  Site-specific	solar	assessment	
Ø Model	development	
Ø  Feasibility	of	projects	
Ø  Due-	diligence		

12/06/1
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•  Ground measurements 
•  Public solarimetric stations and/or networks 
•  Site-specific from projects - proprietary data 

1st Workshop Solar Energy - FAPESP 



Satellite	model	VS	Ground	measurements	
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Benchmark for Brasil-SR satellite model 



New	Brazilian	Atlas	of	Solar	Energy	-	2007	

2006 

An INPE accomplishment in association with 
several national universities 

•  17 years of satellite data 
•  Spectral radiation transfer model 
•  Validation by using more than 500 ground sites 
•  National coverage 

 
 
 

Download pdf and shape format  data at: 
           http://labren.ccst.inpe.br/atlas_2017.html 
 



Data	uncertainty	



Database	Uncertain?es	
Ground	data	quality	control	

dure and the QC for meteorological data based on the criteria used by the US Mete-
orological Center (http://www.webmet.com). Figure 5.4 shows the major features of 
the QC procedure. Here, for each test box in the block diagram one level of QC is 
assigned, as illustrated in Figure 5.5: 

Level #1 – Physically possible event
Level #2 – Extremely rare event
Level #3 – Consistency between equipment results
Level #4 – Consistency with respect to model results.

The raw data and the physically possible values for meteorological variables are the 
input to the QC procedure. The physically possible constraints are derived from a 
30-year historical meteorological archive for Brazil provided by INMET (Brazilian Na-
tional Institute of  Meteorology). Criteria values for the solar radiation components 
follow the procedure of the BSRN recommendations and are presented in Table 5.7.

Figure 5.4: Block diagram of the QC procedure.

Identification of Projects and Initiatives to Evaluate the Solar Potential of Brazil for the Generation of 
Electricity by Concentrated Solar Power
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Table 4a: Classification of existing solarimetric networks performing DNI measurement in Brazil. Three 
levels are defined with respect to the usefulness of the respective measurements for CSP applications.

Category Level 1 Level 2 Level 3

Sensor quality Secondary standard pyr-
heliometer

first class pyrheliometer other sensors (PV based 
sensors, GHI only)

Data quality less than 5% gaps, main-
tenance according to 
BSRN standard, QA ac-
cording to BSRN standard

more than 5% gaps, pro-
prietary maintenance and 
QA procedures

unknown no. of gaps, 
unknown maintenance 
and QA procedure

Data set design minimum length of 5 ye-
ars, one minute temporal 
resolution 

length of 1 to 5 years, 1 
minute to 1 hour tempo-
ral resolution

length less than one year, 
less than hourly time re-
solution

Data availability publicly available restricted availability no or unknown availabili-
ty

Table 4b: Classification of existing solarimetric networks performing DNI measurement in Brazil. Three 
levels are defined with respect to the usefulness of the respective measurements for CSP applications.

RelevanceRelevanceRelevance
Category Very high High Medium
O & M      
Quality control      
Metadata    
Choice of sensors      
Installation methods      
Location      
Frequency      
Time range      
Calibration      
Data acquisition      
Availability      

4.
 SATELLITE MODELS FOR THE ASSESSMENT OF DIRECT NORMAL IRRADI-
ANCE

In addition to ground-based measurements, direct normal irradiance can be derived 
from satellite data. Geostationary satellites like METEOSAT or GOES provide high-
resolved information on e.g. cloudiness. As clouds have the strongest impact on the 
extinction of solar irradiance in the atmosphere, satellites give essential information 
on the effective cloud transmission (by calculating the so-called cloud index). Com-
bining an algorithm for the calculation of the cloud index with modeling the radia-
tive transfer in the cloud-free atmosphere using assumptions on the amount of 
aerosols, water vapour and gases (O3, O2, CO2, ..) then gives an estimate on DNI. 

Although ground measurements – if available – provide more accurate estimates of 
DNI, satellite data are a premium choice for the evaluation of the solar potential as 

Identification of projects and initiatives to evaluate the solar potential of Brazil for the generation of 
electricity by Concentrated Solar Power – Intermediate Report – 2014-06-30
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Source: Report DKTI-CSP, PN 2011.9781.3-001 



Solar	variability	



Solar	variability	
short	term	fluctua?ons	
clearness	index	Kt	

•  Solar resource varies from 
site to site 

•  Correlation between each 
pair of radiometers varies 
with integration time 

Source Perez et al., personal comunication 

DRAFT 3-14-2015 ©Perez et al. 

 

Fig. 4: Site-pair correlation as a function of time period and distance for sample regions in North America and 
Hawaii. Mean monthly cloud speed was estimated from satellite-derived cloud motion vectors computed for each 
data point. 

 

 

DRAFT 3-14-2015 ©Perez et al. 

 

Fig. 4: Site-pair correlation as a function of time period and distance for sample regions in North America and 
Hawaii. Mean monthly cloud speed was estimated from satellite-derived cloud motion vectors computed for each 
data point. 

 

 



Solar	variability	
long	term	fluctua?ons	

 
•  Measurements for long-term 

solar resource characterizations 
require years to complete, which 
is an unacceptable timeline for 
the rapidly emerging needs of 
solar energy applications. 

 
•  It takes many years to stabilize 

the solar irradiance for a given 
site 

•  This is an indication of the need 
to compare site-specific short 
term solar data with long term 
solar information form some 
other available regional source of 
information 

Source Gueymard and Wilkox, 2009 

1. How many years does it take before the solar radiation 
components stabilize and converge to their long-term 
value? 

2. Does the variability in annual irradiation change sig-

nificantly from one site to the other, or with climatic 
conditions? 
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Fig. 2:  Number of years needed to stabilize DNI and GHI in 
the worst-case scenario at Burns, OR. 
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Fig. 3:  Same as Fig. 2, but for Eugene, OR. 
 
The first question can be addressed in a variety of ways. 

Here, the worst-case scenario is considered, using the avail-
able long data series from the four sites in Table 1. It is as-
sumed that the long-term annual average irradiation calcu-
lated from all the available complete years of data is not 
significantly different from the “true” climatological value, 
which is not known. The percent differences between each 
annual irradiation and this long-tem value are sorted in de-

creasing order of magnitude, separately for the positive and 
negative anomalies. This specific sorting, from the worst 
years (largest anomalies) to the best years (smallest anoma-
lies) typifies the hypothetic case where, by chance, a meas-
urement station would start operating during the worst year, 
which would be followed (by chance again) by the worst of 
the remaining years, etc.  
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Fig. 4: Same as Fig. 2, but for Hermiston, OR. 
 
This process is illustrated in Figs. 2–5. It is obvious from 
these figures that GHI is almost always within ±5% of the 

long-term mean (indicated by the yellow-shaded area), 
whereas it takes many years for DNI to stabilize and reach 
the limits of this zone. The good-year and bad-year anomaly 
tracks are almost symmetrical at Eugene, but not at the other 
sites. The more pronounced bad DNI years can be explained 
by the incidence of volcanic activity (El Chichón and Pi-
natubo), which greatly affected DNI. Although these are 

historical events, similar events cannot be ruled out when 
fully considering the future solar resource. 
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Fig. 5: Same as Fig. 2, but for Golden, CO (NREL). 
 
 To address the second question above, another kind of 
analysis has been conducted, this time based on the mostly 
modeled data from the 1961–1990 NSRDB. This dataset 
conveniently spans the 30-year climatological period, and 

provides solar radiation data for 239 U.S. sites, thus cover-
ing a large range of climatic conditions. The natural vari-
ability in DNI and GHI is characterized here by their coeffi-
cient of variation (COV), i.e., the standard deviation of their 
annual anomaly divided by their 30-year climatological 
mean. It is found that the COV of DNI is much larger (2–3 
times more) than that of GHI at any given site. This cor-



Overview	on	solar	irradia<on	
forecast	methods	

	



Grid	integra?on	of	PV	Power:	marke?ng	
	
Ø 		by	Transmission	System	Operators	(ONS,	ANEEL)	

• 	Regional	forecast		

Ø 		direct	marke?ng	(solar	plants)	

• 	Local	forecast	

Ø 	Forecast	horizons	
		



Solar	forecas?ng	horizons	



The best method depends on the 
forecast horizon 

 
•  Persistence from local ground 

measurements 

•  Cloud Motion from Sky Imagers - CM-SI – 
prediction with high spatial and temporal 
resolution forecastings of ramp effects (up to 
30 minutes) 

•  Cloud Motion from Satellites - CM-Sat Uses 
satellite radiative transfer models (Ex: 
BRASIL-SR) providing regional forecasts for 
horizons from 30 minutes to 6 hours 

•  Numerical Weather Prediction - NWP 
Atmospheric models provides forecasts for 
vast regions on the horizon from 12h to 72h. 
They need adjustments through machine 
learning techniques (eg. neural networks) 

Solar forecasting methodology 

segundos    minutos    horas    dias  

pontual 
Séries temporais 

CM-SI: sky imagers 

CM-Sat: satellite images 

CM-NWP: numerical  
weather prediction models 

Persistence 



Ground	data	-	Persistence	method	
Nowcast	(minutes)	

persistence: 
 
 
 
 
constant ratio of measured PV power Pmeas to clear sky PV 
power Pclear

 
 
Post processing by statistical or machine learning methods 



Cloud	Mo?on	from	Sky	Imagers	-	CM-SI	

Irradiância medida 
 
Irradiância prevista 

Horas sequenciais 
Comparison	between	predicted	and	measured	5-minute	radia?on	in	Taiwan	

(FU	and	CHENG,	2013) 

Sky cameras: nowcasting 
 
Time horizon: 0 – 3h. 



Cloud Mo?on	from	Satellites	-	CM-Sat	

Solar Resource Forecasting Webinar, 27th January 2016 

�cloud index from 
   Meteosat images with 
   Heliosat method 

�cloud motion vectors by 
   identification of matching 
   cloud structures in  
   consecutive images 

�extrapolation of  
   cloud motion to predict 
   future cloud index 

 

 

 

 

 
 
 
 
 

Irradiance prediction  
based on satellite data 

 Meteosat Second Generation (high resolution visible range) 

7 



Short-term forecasting scheme (up to 6 hours in advance) using 
statistical methods on GOES satellite images.  

Cloud Mo?on	from	Satellites	-	CM-Sat	



Results	LABREN:	Cloud	detec?on	methods	(Ceff)	by	satellites	and	
cameras	
Useful	for	CM-SI	and	CM-Sat	

	
Resultados	recentes:	



Sky	cameras	X	Satellite	images	
Satellite	images	calibrated	with	ground	truth	from	
sky	cameras	
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In addition, the cumulative distribution functions (CDF) of the two databases were 

analyzed through the Kolmogorov-Smirnov (KS) test. Figure 3.4 shows the two 

functions, where it can be observed that the two distributions have very similar 

behavior. Also, with respect to the test, using CCFCam as a reference, the null 

hypothesis was accepted, with a threshold value of 0.023 and maximum 

difference between the CDFs of 0.019. This result denotes that despite the 

differences in the partially cloudy scenarios, the two datasets can be considered 

statistically the same. 

 
Figure 3.4. Cumulative Distribution Functions of CCFSat and CCFCam.  

 
 

In summary, the larger discrepancies between the cloud cover fractions provided 

by the satellite and by the all-sky camera methods occur for partially cloudy 

scenarios. The disparities can be related to three sources of uncertainty: 

differences on viewing geometry, the spatial resolution and algorithm deficiencies 

(ESCRIG et al., 2013; WERKMEISTER et al., 2015). 

The spatial resolution is also a major source of differences among the CCF 

estimates by the two methods. Convective clouds with areas smaller than 

1 km2 can be misidentified by the visible satellite imagery. Besides that, the 

presence of stratocumulus clouds surrounding small clear sky areas can be a 

source of error. These cloudless areas can be identified by the all-sky camera, 

17 
 

Figure 3.3. Frequency histogram for the deviations between cloud cover fraction 
provided by CCFSat and CCFCam in Octas. Positive deviations indicate the 
CCFSat values were larger than CCFCam values. 

 
 

 

Table 3.3. Contingency table for three cloud coverage scenarios provided by satellite 
and all-sky camera methodologies. 

 
CCFCam 

Scenario Clear Broken Cloudy 
Clear 42.1% 3.5% 1.1% 

Broken 4% 5.1% 4.3% 
Cloudy 0.6% 2.9% 36.4% 

 
 
Table 3.4 shows the POD and FAR values for the three cloud scenarios produced 

by satellite and the all-sky camera methods. It can be noted that both methods 

present good agreement for cloudless and overcast sky conditions. The satellite 

method has identified the cloudless scenario in > 91% of the cloudless cases 

indicated by the all-sky camera method. Furthermore, FARbroken around 61% 

means that both methods provided data presenting larger discrepancies for 

partially cloudy scenarios. 

 
Table 3.4. PODs and FARs between CCFSat e CCFCam. 

𝑷𝑶𝑫𝒄𝒍𝒆𝒂𝒓 𝑷𝑶𝑫𝒃𝒓𝒐𝒌𝒆𝒏 𝑷𝑶𝑫𝒄𝒍𝒐𝒖𝒅𝒚 𝑭𝑨𝑹𝒄𝒍𝒆𝒂𝒓 𝑭𝑨𝑹𝒃𝒓𝒐𝒌𝒆𝒏 𝑭𝑨𝑹𝒄𝒍𝒐𝒖𝒅𝒚 
91.1% 44.5% 87.1% 9.9% 61.6% 8.9% 
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Figure 3.1. Picture from the sky without the elevation angle of 30° (left) and evaluation 
made by the software (right). 

 
  
 

3.2.2. Determination of cloud cover fraction using geostationary satellite 

imagery 

To compare the satellite data with the cloud cover fraction results obtained with 

the All-Sky Camera, it was necessary to adapt the Ceff methodology. Since Ceff 

refers only to the cloud coverage of each pixel, a Ceff value threshold was used 

to classify each pixel as clear sky or cloudy. The threshold used was 0.14, 

because of best correlation with the camera results. Thus, the fraction of cloud 

cover estimated by the satellite (CCFSat) was defined as the number of pixels 

classified as cloudy, divided by the total in the analyzed area. The image 

acquisition was done with a 30-minutes time resolution (with exception to the 

periods of fast scanning mode), from July/2016 to June/2017. 

The satellite area necessary to compare with the camera is not easy to determine, 

because clouds with different heights appear differently in the camera image, e.g. 

higher clouds appear sooner in the camera horizon. So, with the discard of zenith 

angles larger than 70º of the camera image, we started with a mean cloud height 

of 3 km, which gives an area of ~290 km², and then changed the area until the 

best correlation with the camera results were found. The best correlation were 

found using an area of 23x23 pixels (~530 km²), which refers to a mean cloud 

height of ~4 km. Figure 2.3 presents the Ceff of an area of 35x35 pixels over CPA 

on the left and the mask made using the threshold on the right.  
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Figure 3.2. Ceff of an area of 35x35 pixels over CPA on the left and the mask made using 
the threshold of 0.14 on the right (white pixels refers to cloud contaminated 
and blue to clear-sky).  

  

 

3.2.3. Statistical analysis  

Three statistical indexes were used to compare the methodologies to estimate 

cloud cover fraction. The method using all-sky camera was the reference 

methodology. The first statistical index used was the Mean Deviation described 

in Equation 3.1 where n is the number of match ups between the two data sets 

and xm is the difference between them. The Mean Deviation (MD) is positive if 

the all-sky camera method provided lower cloud cover fraction values than the 

satellite methods. 

𝑀𝐷 = 1
𝑛
∑ 𝑥𝑚𝑛
𝑚=1                                                (3.1) 

The Standard Deviation (SD) is defined by Equation 3.2. The expected value for 

MD is zero if both methods provide equal estimations for cloud cover fractions. 

The SD value provides information on the dispersion of the discrepancies around 

the MD value. 

𝑆𝐷 = √1
𝑛
∑ (𝑥𝑚 −𝑀𝐷)²𝑛
𝑚=1                                        (3.2) 

The last statistical index used for comparisons between two datasets was the 

Correlation Coefficient R as defined by Equation 3.3. 

𝑅(𝑦, 𝑧) = ∑ (𝑧𝑚−𝑧̅)(𝑦𝑚−𝑦̅)𝑛
𝑚=1

√∑ (𝑧𝑚−𝑧̅)2.∑ (𝑦𝑚−𝑦̅)2𝑛
𝑚=1

𝑛
𝑚=1

                                  (3.3) 



LABREN Results: Ramp frequency mapping 
Ramp variability Score (VS) 



LABREN Results: Numerical forecast 
Adjusted by Artificial Neural Networks (ANN) 



LABREN Results: Numerical forecast 
Adjusted by Artificial Neural Networks (ANN) 
ü Meteorological model output (WRF) fine-tuning using artificial neural network (ANN) 

ü  ANN training performed with irradiance or local production data 

ü  Predictions employ different methodologies for different time scales 

 

modelo 
radiativo 

modelo 
mesoescala 



Fall 

(WRF-OBS) (Adjusted WRF-OBS) 

Spring 

Differences from	the	adjusted	regional	forecast	



Evalua<on	of	methods	and	conclusions	
	



RMSE	in	dependence	of	forecast	horizon	

Fonte Lorenz et al. (2016) 

   Persistence 

•  CMV forecasts better than NWP based 
forecast up to 3 hours ahead 

•  Persistence better than CMV forecasts 
up to  10 minutes ahead 

Solar Resource Forecasting Webinar, 27th January 2016 

Rmse in dependence of forecast horizon 
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comparison of German average  and single site forecasts:  

�German average RMSE about 1/3 of single site RMSE for NWP forecasts 

German average                             single sites 



Combine	Persistence	+	Satellite	+	Numerical	model	
Reported	methodologies	
	

Solar Resource Forecasting Webinar, 27th January 2016 

  
  

 
 

 

  

 
 
  
 

 
 

 
 

 

  

 
 
  

 
 
  

 

 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

 

PV power predictions 

PV power 
measurement   

satellite cloud motion 
forecast CMV 

days hours 

PV simulation   
 

 

 

NWP: numerical  
weather prediction  

forecast horizon 

Different input data and models  
 
 

PV simulation    
 
 

 

 

persistence 
 
 

 

 

9 

Evaluation: 
here forecast horizons  
15 min to 5 hours ahead 

 

 

 

    

 

 

    

 

 

 

    



RMSE	in	dependence	of	forecast	horizon	

Fonte Lorenz et al. (2016) 

Solar Resource Forecasting Webinar, 27th January 2016 

Rmse in dependence of forecast horizon 
 

 

 

 
 
 

�forecast combination outperforms single model forecasts  
for all horizons 
�improvements with combination larger for regional forecasts 

17 

German average                             single sites 

combination of forecast models with linear 
regression: 
  
Pcombi =  aNWPPNWP + aCMVPCMV + apersistPpersist + a0 
  
coefficients  aNWP, aCMV, apersist, a0 are fitted to measured 
data in dependence of: 
  
•  forecast horizon 
•  hour of the day 

 



RMSE	in	dependence	of	forecast	horizon	

Fonte Lorenz et al. (2016) 

combination of forecast models with linear 
regression: 
  
Pcombi =  aNWPPNWP + aCMVPCMV + apersistPpersist + a0 
  
coefficients  aNWP, aCMV, apersist, a0 are fitted to measured 
data in dependence of: 
  
•  forecast horizon 
•  hour of the day 

 

Solar Resource Forecasting Webinar, 27th January 2016 

Regression coefficients 
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bars:  
standard deviation  
for all hours & sites 

horizon dependent regression coefficients different for 
regional and single site forecasts 

German average                             single sites 



CM-SI 

segundos    minutos    horas    dias  

pontual 
Séries temporais 

CM-Sat NWP-ANN 

segundos    minutos    horas    dias  

pontual 
Séries temporais 

LABREN	Proposed	forecasts	
Ø  CM-SI:	data	from	site-specific	sky	cameras		
Ø  CM-Sat:	Regional	satellite	data	(validated	with	SI)	
Ø  NWP:	Numercal	meteorological	wodels	
	
	



http://labren.ccst.inpe.br/  


