

EDPrDeveloping Offshore Wind Energy

1206 employees from 34 different nationalities

Offshore Wind - Potentially more infrastructure and cost.

Source: Siemens.com Source: E.ON

Why Offshore Wind?

Offshore Wind Energy

- · Continuous growth in energy demand, in some regions.
 - · Curtailment or removal of nuclear, coal etc.
- Coastal proximity to major cities Often poor / costly grid.
- Reliable sea to land wind direction for capacity market.
- Need to increase the installed capacity of renewable energy
 - Climate change / carbon targets
- Wind energy is a highly developed form of clean energy
 - Develop supply chain particularly where Oil and Cas exists
- More wind and less objections than Onshorenited Kingdom
- Possibility to install higher capacity than Onshore
 - Transportation restrictions on turbine size.
- Often higher wind resource due to lack of natural barriers, Reduced turbulence.

Relation between installed offshore wind capacity 2015 vs expected 2022 (Source: Roland Berger)

EDPR Offshore General Meeting

Offshore vs Onshore OR complementary.

Offshore will always be more expensive

LCOE and average European power price €/MWh

• Source: Bloomberg

Cost reduction will continue!

LCOE likely to reduce by a further 50%

Drivers behind the reduction in wind offshore based on commissioning year

· Source: DNV, Goldman Sachs

Offshore Substructures- Floating

Offshore Wind Energy

